

МГУ имени М.В.Ломоносова

ИШК.К.Федянин

г-выря 2024 г.

ОТЗЫВ ВЕДУЩЕЙ ОРГАНИЗАЦИИ

федерального государственного бюджетного образовательного учреждения высшего образования «Московский государственный университет имени М.В. Ломоносова»

на диссертационную работу Акимовой Натальи Игоревны

«Стресс-адаптивные характеристики систем токсин-антитоксин II типа VapBC46 *Mycobacterium tuberculosis* и VapBC2 *Mycolicibacterium smegmatis*», представленную к защите в диссертационном совете 24.1.088.01 (Д 002.214.01) на базе ФГБУН «Институт общей генетики имени Н. И. Вавилова» Российской академии наук на соискание учёной степени кандидата биологических наук по специальности 1.5.7. Генетика

Актуальность исследования

Диссертация Акимовой Н. И. посвящена исследованию участия в регуляции устойчивости в ответ на воздействия стрессовых факторов различной природы двух систем токсин-антитоксин II типа: VapBC46 M. tuberculosis и VapBC2 M. smegmatis. Система токсин-антитоксин представляет собой оперон, состоящий из генов, один из которых кодирует стабильный токсин, а другой - его нестабильный антагонист (антитоксин). Предполагается, что системы токсин-антитоксин могут играть важную роль в адаптации бактериальных клеток при стрессовых воздействиях различной природы, главным образом, за счёт индукции перехода бактерий в дормантное состояние. В дормантном (метаболически неактивном) состоянии бактериальные клетки становятся невосприимчивыми к воздействию различных стрессовых факторов, антибиотики. Данное свойство приобретает особое значение в случае патогенных бактерий, которые при стрессовом воздействии могут перейти в дормантное состояние, а после его прекращения осуществить обратный переход в метаболически активное состояние, что может привести к реактивации заболевания. В связи с этим возникает необходимость в разработке новых, более эффективных антимикробных соединений. Возбудитель туберкулёза M. tuberculosis является одним из видов, геном которого содержит наибольшее число генов, кодирующих белки систем токсин-антитоксин. Между многочисленными системами токсин-антитоксин M. tuberculosis обнаружены взаимодействия, за счёт которых, предположительно, достигается адаптация к различным стрессовым факторам, воздействующим на бактериальные клетки в условиях инфицирования организма-хозяина. Тем не менее, можно выделить несколько ключевых систем токсин-антитоксин, активность которых влияет на функционирование всей сети в целом. Одной из них является система токсин-антитоксин VapBC46, которая может

рассматриваться в качестве перспективной биомишени. Особый интерес представляет исследование влияния мутации С113G в гене, кодирующем токсин VapC46, на устойчивость бактерий к воздействию антибиотиков, окислительного стресса и стресса, связанного с недостатком нутриентов. Данная мутация была обнаружена при секвенировании изолятов высоковирулентной сублинии *M. tuberculosis* Beijing-B0/W-148.

Геном другого представителя рода Mycobacterium – M. smegmatis содержит меньшее значительно генов, кодирующих число системы токсин-антитоксин. Значительный интерес для изучения представляет система токсин-антитоксин VapBC2. Главным образом, это связано с предположением, сформулированным по результатам более ранних работ о том, что токсин VapC2 может участвовать в активации DnaK главного шаперонного белка микобактерий. Кроме того, было показано, что гомолог антитоксина в геноме M. tuberculosis - Rv2034 - активирует экпрессию оперона dos, играющего ключевую роль в регуляции перехода бактериальных клеток в дормантное состояние. Понимание механизмов участия систем токсин-антитоксин в регуляции перехода бактериальных клеток в дормантное состояние и в адаптации к стрессовым воздействиям различной природы может играть важную роль при разработке новых, более эффективных методов противотуберкулёзной терапии.

Научная новизна

В работе впервые было исследовано влияние мутации в гене *vapC46* на устойчивость к антибиотикам, воздействию окислительного стресса, стресса, связанного с недостаточным поступлением соединений азота и углерода, а также на рибонуклеазную активность токсина VapC46. Диссертантом также была впервые проведена экспериментальная оценка рибонуклеазной активности токсина VapC46.

Структура и содержание работы

Диссертационная работа Акимовой Н. И. написана по стандартному плану и состоит из введения, обзора литературы, материалов и методов исследования, результатов и их обсуждения, выводов, списка сокращений и терминов и списка цитируемой литературы. Общий объём работы составляет 158 страниц, 18 таблиц и 56 рисунков. Список цитируемой литературы включает в себя 213 наименований.

Во введении сформулированы цель и задачи исследования, представлены актуальность, новизна темы исследования и практическая значимость работы. Также сформулированы положения, выносимые на защиту.

Глава Обзор литературы включает в себя 4 раздела. В первом разделе приведена общая характеристика бактериальных систем токсин-антитоксин: подробно рассмотрена их классификация, распространённость в геномах различных видов бактерий, выполняемые ими функции. Также в данном разделе формулируется понятие стрессадаптивной функции. Второй раздел посвящён рассмотрению микобактериальных систем токсин-антитоксин, в частности, VapBC46 *M. tuberculosis* и VapBC2 *M. smegmatis*. В третьем разделе рассматривается возможное участие систем токсин-антитоксин в регуляции фолдинга белков и регуляции оперона dosR. Заключительный раздел посвящён рассмотрению возможности прикладного применения знаний о системах токсинантитоксин. В частности, рассмотрены возможные подходы к использованию систем токсин-антитоксин в генетической инженерии и в терапии инфекционных заболеваний.

В главе Материалы и методы приводится широкий диапазон методов, освоенных диссертантом при выполнении исследовательской работы. Все методы описаны в достаточной степени подробно.

Глава Результаты и обсуждение поделена на два раздела, соответствующих исследуемым системам токсин-антитоксин. Каждый из разделов содержит собственно результаты, обсуждение и краткое заключение.

В главе Заключение приведён краткий анализ результатов, полученных при исследовании обеих систем токсин-антитоксин.

Выводы точно соответствуют поставленным задачам.

По результатам работы опубликовано 3 статьи в рецензируемых журналах, рекомендованных ВАК Минобрнауки.

Работа выполнена на высоком уровне, написана хорошим языком, прекрасно иллюстрирована. Имеющиеся отдельные опечатки и стилистические погрешности не снижают уровень диссертационной работы.

Автореферат полностью соответствует содержанию диссертации.

Диссертационная работа Н.И. Акимовой «Стресс-адаптивные характеристики систем токсин-антитоксин II типа VapBC46 Mycobacterium tuberculosis и VapBC2 Mycolicibacterium smegmatis» представляет собой завершенное самостоятельное исследование, содержание диссертации полностью соответствует п.п. 9-14 «Положения о порядке присуждения ученый степеней», утвержденного Постановлением Правительства Российской Федерации №842 от 24.09.2013 с изменениями, предъявляемым к диссертациям, представленным на соискание степени кандидата биологических наук по, а ее авто — Акимова Н.И. заслуживает присуждения искомой степени кандидата биологических наук по специальности 1.5.7 — генетика биологической отрасли науки.

Отзыв обсужден на заседании кафедры генетики биологического факультета Московского государственного университета имени М.В. Ломоносова. Протокол №1-24 от 10 января 2024 г.

Заместитель заведующего кафедрой генетики

ведущий научный сотрудник, кбн

Е Указачина Карбышева Е.А.

fel