ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ «ИНСТИТУТ ОБЩЕЙ ГЕНЕТИКИ им. Н.И. ВАВИЛОВА» РОССИЙСКОЙ АКАДЕМИИ НАУК

На правах рукописи

ЧЕКАЛИН ЕВГЕНИЙ ВИТАЛИЕВИЧ

ВЛИЯНИЕ ЭПИГЕНЕТИЧЕСКИХ ФАКТОРОВ НА РАЗВИТИЕ ИММУНОВОСПАЛИТЕЛЬНЫХ ЗАБОЛЕВАНИЙ КОЖИ

03.02.07 - генетика

03.01.09 – Математическая биология,

биоинформатика

Диссертация на соискание ученой степени

кандидата биологических наук

Научный руководитель: к.б.н. Брускин С.А.

Москва 2019

Оглавление

Оглавление2
СПИСОК СОКРАЩЕНИЙ6
ВВЕДЕНИЕ7
ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ 10
1.1. Псориаз 10
1.1.1. Эпидемиология заболевания11
1.1.2. Иммунопатогенез заболевания12
1.1.3. Генетика заболевания14
1.1.4 Эпигенетика заболевания15
1.1.4.1. Метилирование ДНК в псориазе15
1.1.4.2. Гистонные модификации в псориазе17
1.2. Механизмы регуляции экспрессии генов18
1.2.1. Эпигенетическая регуляция18
1.2.1.1. Метилирование ДНК 19
1.2.1.2. Гистонные модификации19
1.2. Исследования транскриптома, метилома и интерактома псориаза 21
1.2.1. Полногеномный количественный анализ мРНК (RNA-Seq)
1.2.2. Анализ вклада эпигенетических компонентов в развитие псориаза.23
1.2.3. Анализ транскрипционных факторов, регулирующих сигнальные
каскады, приводящие к развитию псориаза
ГЛАВА 2. МАТЕРИАЛЫ И МЕТОДЫ 31
2.1. Забор образцов кожи больных псориазом и здоровых индивидуумов 31
2.2. Выделение ДНК из образцов кожи 31

2.3. Анализ уровня метилирования ДНК с помощью чипов метилирования
Illumina Methylation BeadChip450k33
2.4. Мета-анализ данных по генной экспрессии поражённой и здоровой
кожи
2.5. Мета-анализ данных по метилированию ДНК в поражённой и здоровой
коже
2.6. База данных результатов иммунопреципитации хроматина ChipBase v2.0
2.7. Поиск транскриптов с дифференциальной экспрессией
2.8. Поиск локусов с дифференциальным метилированием ДНК
2.9. Сборка орграфа генных сетей из результатов экспериментов,
содержащихся в базе данных ChipBase v2.0
2.10. Обогащение списка мишеней транскрипционных факторов
дифференциально экспрессирующимися генами
2.11. Идентификация графов активных транскрипционных факторов с
помощью локального графа максимальной взаимной информации 40
2.12. Программная реализация алгоритмов и доступ к приложению 45
3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ
3.1. Принципиальная схема исследования 46
3.2. Оценка полногеномных профилей экспрессии в псориазе с помощью
мета-анализа47
3.2.1. Анализ дифференциальной экспрессии между поражённой и здоровой
кожей
3.2.2. Функциональные группы генов, обогащённые дифференциально
экспрессирующимися генами при псориазе55
3.3. Оценка уровня метилирования ДНК в псориазе

3.3.1. Анализ метилирования ДНК с помощью чипов Illumina Methylation
BeadChip 450k
3.3.2. Функциональные группы генов, обогащённые дифференциально
метилированными локусами между поражённой псориазом и здоровой
кожи
3.4. Поиск основных регуляторов транскрипции, связанных с развитием
псориаза71
3.4.1. Агрегация направленного графа из существующих данных
экспериментов иммунопреципитации хроматина71
3.4.2. Идентификация подграфов отдельных транскрипционных
регуляторов73
3.5. Поиск локусов ДНК с достоверной корреляцией между уровнем
экспрессии и уровнем метилирования ДНК76
3.5.1 Пересечение множеств генов с дифференциальной экспрессией и
локусов с достоверным дифференциальным метилированием ДНК,
расположенных в регуляторных последовательностях этих генов
3.5.2 Выявление корреляции между метилированием ДНК и экспрессией
через принцип транзитивности79
3.6. Оценка уровня метилирования ДНК в сайтах посадки
транскрипционных регуляторов, связанных с дифференциально
экспрессирующимися генами и поиск генов, экспрессия которых может
объясняться дифференциальной активностью транскрипционных
регуляторов в результате метилирования их сайтов посадки
3.6.1 Оценка уровня метилирования ДНК в сайтах связывания ТФ,
находящихся внутри локусов, различающихся по уровню метилирования
между поражённой и здоровой кожей85
3.6.2 Анализ метилирования ДНК в сайтах посадки ТФ, полученных с
помощью оценки пересечения списков ДЭГ и ДМЛ 88

3.6.3 Оценка уровня метилирования ДНК сайтов посадки	
транскрипционных факторов в локусах с корреляцией между уровнем	I
метилирования ДНК и уровнем экспрессии гена	90
3.6.3.1. Анализ пересечения сайтов посадки транскрипционных фактој	ров с
локусами с транзитивной корреляцией между экспрессией,	
метилированием ДНК и фенотипом	91
3.6.3.2. Анализ метилирования ДНК в окрестности сайтов посадки ТФ	,
полученных с помощью пермутаций	94
ЗАКЛЮЧЕНИЕ	98
ВЫВОДЫ	100
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ	101
ПРИЛОЖЕНИЕ	117

СПИСОК СОКРАЩЕНИЙ

СрG сайт – сайт, в котором цитозин (С) связан с гуанином (G) через остаток

фосфорной кислоты (р)

DNMТ – метилтрансферазы

HDAC – гистоновая деацетилаза

Island- СрG-островок

MI – (mutual information) взаимная информация

N_shore, S_shore – регионы, фланкирующие CpG-островок

РВМС - одноядерные клетки периферической крови

- RNA-seq- полногеномный анализ уровня транскрипции
- SAM S-аденозил-метионин
- TSS точка старта транскрипции
- TSS точка старта транскрипции
- ДМГ дифференциально метилированный ген
- ДМЛ дифференциально метилированный локус ДНК
- ДЭ дифферецниальная экспрессия
- ДЭГ дифференциально экспрессирующийся ген
- НАТ гистоновая ацетилтрансфераза
- ТФ транскрипционный фактор

введение

Иммуновоспалительные заболевания кожи, такие как псориаз, являются сложными генетически обусловленными патологиями. Псориаз - комплексное воспалительное заболевание кожи, в которое вовлечены гиперпролиферация кератиноцитов, их аберрантная дифференцировка и усиленный ангиогенез дермы [Gudjonsson et.al. 2010].

Псориаз может быть спровоцирован стимулами внешней среды, такими как инфицирование стрептококком, повреждение (феномен Кебнера), стресс, курение и алкоголь. В месте образования псориатических бляшек наблюдаются гистологические изменения, например утолщение эпидермиса (гиперкератоз), возникающее вследствие ускоренной пролиферации кератиноцитов, акантоз, уменьшение или полное отсутствие гранулярного слоя и сохранение ядер в корнеоцитах (паракератоз), обусловленные аберрантной дифференцировки кератиноцитов, заметное расширение капиллярной сети в сосочковом слое дермы, приводящее к визуально наблюдаемой эритеме, а также появление плотного воспалительного инфильтрата, состоящего из кластеров CD3+ Tклеток (CD4+ Т-хелперов и антигенпрезентирующих дендритных клеток (DCs) в дерме и CD8+ Т-киллеров) и нейтрофилов в эпидермисе [Lowes et.al. 2007]. В патогенез псориаза вовлечено большое количество взаимодействующих генов и белков. Из-за аутоиммунной природы заболевания неоднократно была продемонстрирована активность генов интерлейкинов (IL-17, IL-22, IL-23) [Meng et al., 2019]. Отдельным вопросом является участие в патогенезе заболевания различных транскрипционных факторов, вовлечённых в регуляции большого количества генов. Так, были предложены модели терапий, которые нацелены на ингибирование экспрессии транскрипционных факторов STAT3 и NFKB [Andres, 2013; Goldminz, 2013]. С появлением большого количества экспериментов по иммунопреципитации хроматина, появилась возможность предсказать активность транскрипционных факторов на основе сетей белок-

белковых (PPI), ген-генных (GGI) и белок-ДНК взаимодействий, что сделало возможным реализацию такой задачи.

Кроме того, в настоящее время активно изучается вопрос, касающийся роли эпигенетических факторов в патогенезе псориаза. Важным элементом регуляции развития этого заболевания считается метилирование ДНК [Zhang] et.al., 2013]. Было et.al., 2011: Zhang показано дифференциальное метилирование ДНК в генах p16INK4, P14ARF, LFA-1, которые paнee были ассоциированы с псориазом [Zarrabeitia et al., 1989; Schon et al., 2000; Rocha-Pereira et al., 2004]. Более детальное изучение роли метилирования ДНК и активности транскрипционных регуляторов в патогенезе псориаза может стать ключом для разработки новых методов терапии. Поэтому актуальным вопросом является изучение влияния метилирования ДНК на активность транскрипционных факторов, а также на экспрессию генов, ассоциированных с развитием псориаза.

<u>Цель работы:</u>

С помощью транскриптомных, эпигеномных и биоинформатических подходов охарактеризовать роль транскрипционных факторов и метилирования ДНК в патогенезе псориаза.

<u>Задачи:</u>

Исходя из поставленной цели, были сформулированы следующие <u>задачи</u> исследования:

1. Провести анализ дифференциальной экспрессии генов и анализ дифференциального метилирования ДНК в образцах здоровой кожи и кожи, поражённой псориазом;

2. Выявить корреляцию между уровнями метилирования ДНК и экспрессии генов;

3. С помощью маркерных графов выявить список транскрипционных факторов, регулирующих дифференциально экспрессирующиеся гены в поражённой псориазом коже;

4. Оценить изменение профилей метилирования ДНК в областях связывания транскрипционных факторов;

5. Выявить список генов, изменение экспрессии которых при псориазе может объясняться изменениями в уровнях метилирования сайтов посадки их транскрипционных регуляторов.

ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ

1.1. Псориаз

Псориаз (ОМІМ 177900) - распространенное хроническое рецидивирующее системное общее воспалительное полигенное и многофакторное заболевание.

Термин псориаз (psoriasis) происходит от греческого "psora", использованного Гиппократом для обозначения этого заболевания. Первое подробное описание этого заболевания сделал Уиллан в 1808 году. В настоящее время различают несколько типов псориаза: обычный (бляшечный, plague) – *Psoriasis vulgaris*; каплевидный – guttate; псориатическая эритродермия – generalized / erythrodermic; пустулезный – pustular; интертригинозный – flexural; эксфолиативный – exfoliative и другие [Peters, Weissman *et al.*, 2000; Nickoloff and Nestle, 2004].

Псориаз относится к заболеваниям кожи, характеризуется гиперпролиферацией эпидермальных кератиноцитов и изменениями в программе их терминальной дифференцировки. Наиболее распространенным симптомом псориаза является появление псориатических бляшек, за которым стоят гистопатологические изменения в ткани, такие как акантоз, гиперкератоз, паракератоз и др. Псориаз может поражать не только кожу, но и суставы. Участие в патогенезе псориаза иммунных клеток и развитие у пациента полноценного воспалительного процесса делают псориаз похожим на аутоиммунные заболевания. Главное различие между ними состоит в том, что антиген, провоцирующий иммунный ответ при псориазе, неизвестен. К гистопатологическим изменениям кожи при псориазе относят также эпидермальную гиперплазию и инфильтрацию кожи клетками иммунной системы, такими как нейтрофилы, лимфоциты и моноциты. Это, в свою очередь, приводит к изменению вида кожных покровов, к появлению псориатических бляшек. В то же время движущей силой в патогенезе псориаза являются иммунные клетки, а именно - семейства лимфоцитов-хелперов Th1 и Th17 [Lowes et al., 2007].

1.1.1. Эпидемиология заболевания

Наиболее распространенной формой псориаза является *Psoriasis vulgaris* (>90% случаев заболевания). Обычно у пациента диагностируют только одну форму псориаза, однако, в некоторых случаях диагностируют более одной формы болезни.

Псориаз относится к заболеваниям с генетической предрасположенностью. Тяжесть и симптомы псориаза зависят от того, какие мутации имеются у пациента, а обострение болезни происходит под воздействием так называемых провокационных факторов - часто факторов окружающей среды.

В среднем 2-3% [Lima *et al.*, 2012] популяции людей во всем мире болеют псориазом, однако в разных странах, регионах и этнических группах эти цифры могут значительно меняться [Kimball and Enamandram, 2013]. Согласно ранее опубликованным исследованиям [Parisi *et al.*,2012], распространенность псориаза в странах Европы варьирует от 0,73% до 2,9%, в США от 0,7% до 2,6%. При этом в Южной Америке, Индии, Африке (Египет и Танзания) и Азии (Китай, Шри-Ланка, Тайвань), только 0-0,5% людей подвержены псориазу (таблица 1).

Страна	% больных псориазом
Самоа	0
Китай	0,2-1,7
Шри-Ланка	0,4
Норвегия	1,1-1,4
США (афроамериканцы)	1,3
Норвегия (саамы)	1,4
Швеция	1,4
Испания	1,4

Таблица 1 Распространение псориаза в некоторых странах мира [Parisi et al.,2012]

Хорватия	1,6
Великобритания	1,6
СНГ	2,0
США (белые)	2,5
Фарерские острова	2,8
Дания	2,9

Необходимо отметить, что, несмотря на более низкий процент больных на экваторе и увеличение его к полюсам, маловероятно, что климатические различия влияют на географическую вариабельность, поскольку даже в популяциях, населяющих одну климатическую зону, частоты заболевания псориазом варьируют в широких пределах [Ortonne *et* al., 1999].

Несмотря на то, что в большинстве популяций встречаемость больных псориазом не превышает 3%, следует также учитывать, что пациенты, у которых болезнь протекает в легкой форме, не всегда обращаются к врачам, поэтому частоты встречаемости псориаза, приведенные в таблице 1, могут считаться немного заниженными.

1.1.2. Иммунопатогенез заболевания

В настоящее время псориаз рассматривается как сложное мультигенное и мультифакторное заболевание, развитие которого обусловлено альтернативной экспрессией определяющих предрасположенность В генах, К ЭТОМУ заболеванию, эпигенетическими ИХ сочетанием, факторами, a также присутствием факторов, провоцирующих запускающих патологический процесс.

Модель иммунопатогенеза псориаза представлена на рисунок 1. Взаимодействие между провоцирующими факторами и клетками для развития заболевания. Триггеры запускают каскад событий, который в ряде случаев включает активацию плазмацитарных дендритных клеток и секрецию

интерферона-α. Активированные миелоидные дендритные клетки мигрируют в лимфатические узлы и индуцируют дифференциацию наивных Т-клеток в эффекторные клетки, такие как Т-хелперы 17 (Th17), и Т-хелперы 1 (Th1). Иммунные клетки несут хемокиновые рецепторы, такие как CCR6, CCR4, и CXCR3, за счет которых они движутся по градиенту хемокинов в пораженную ткань (кожу). Таким образом, клетки-хелперы мигрируют в капилляры кожи, где они взаимодействуют с селектинами и интегринами, после чего проникают через стенки капилляров в дерму.

Рисунок 1. Модель иммунопатогенеза псориаза [Nestle et al., 2009].

Ключевыми процессами во время развития заболевания можно считать презентацию антигена дендритными клетками Т-клеткам и секрецию провоспалительных медиаторов, в т.ч. фактора некроза опухоли α (TNF- α), интерферона γ (IFNG) и интерлейкинов *IL-17 (IL-17A, IL-17F)*.

Эти медиаторы активируют кератиноциты, чем вызывают гиперпролиферацию и меняют программу их дифференцировки. Кератиноциты увеличивают продукцию антибактериальных белков (напр., LL-37, кателицидина (cathelicidin) и β-дефензинов), хемокинов (напр., CXCL1, CXCL9, *CXCL11* и CCL20), и белков S100 (напр., S100A7-9). Миграция Т-клеток регулируется через взаимодействие Т-клеток с интегринами и коллагеном IV на базальной мембране и в межклеточном матриксе, соответственно [Nestle *et al.*, 2009].

1.1.3. Генетика заболевания

Как и другие аутоиммунные и воспалительные барьерные заболевания, псориаз имеет генетическую компоненту [Bhalerao and Bowcock, 1998]. То, что имеется генетическая предрасположенность к заболеванию, в настоящее время не вызывает никаких сомнений.

Гораздо более высокая конкордантность у монозиготных близнецов по сравнению с дизиготными указывает на наличие строгой генетической предрасположенности к псориазу. Более того, у монозиготных близнецов в дизиготных наблюдается одинаковая отличие ОТ клиническая картина распределения бляшек, степень выраженности симптомов и протекание патологии [Oka et al., 2012]. По результатам различных исследований конкордантность псориаза между монозиготными близнецами варьирует в пределах 35-72%, в то время как конкордантность между дизиготными близнецами варьирует в пределах 12-30% [Bowcock and Cookson. 2004]. Тот факт, что конкордантность никогда не достигает 100% даже у монозиготных заболевания близнецов, говорит развития необходимы 0 TOM. для дополнительные факторы, например, факторы окружающей среды. Ранее псориаз рассматривался как моногенное аутосомно-рецессивное заболевание и ассоциировался с дисфункцией главного комплекса гистосовместимости МНС-I, конкретно, локуса HLA-Cw6. Впоследствии были выявлены и другие области генома, ассоциированные С псориазом, являются локусами предрасположенности к псориазу PSORS (Psoriasis Susceptibility Loci). Большое

количество локусов предрасположенности к псориазу, которые обозначаются PSORS (Psoriasis Susceptibility Loci). Наиболее известны *PSORS*1 (локализован в 6p21.3, ген-кандидат HLA-C), *PSORS*2 (расположен в 17q24-25, гены-кандидаты SLC9A3R1 и RAPTOR), *PSORS*4 (расположен в 1q21, гены-кандидаты LCE3B and LCE3C), и *PSORS*5 (расположен 3q21, ген-кандидат SLC12A8) [Oka *et al.*, 2012]. Помимо этих локусов в литературе рассматривают локусы *PSORS*3, *PSORS*6 – *PSORS*16 [Duffin et.al., 2008].

Изначально предполагалось, что в состав региона *PSORS*1 входит кластер генов HLA-C, и с псориазом ассоциирован конкретно аллельный вариант HLA-Cw6 [Allen et al., 2005]. Однако последние данные свидетельствуют о том, что присутствие HLA-Cw6 в геноме не объясняет всех клинических случаев псориаза, поскольку не все больные псориазом являются носителями HLA-Cw6.

1.1.4 Эпигенетика заболевания

Долгое время в качестве основной причины псориаза рассматривались нарушения в работе главного комплекса гистосовместимости МНС-I, и конкретно локуса генов - (HLA)-Cw6, но т.к. показатель заболеваемости (конкордантность) у монозиготных близнецов составляет в среднем лишь 67%, было выдвинуто предположение, что в иммунопатогенезе псориаза определенную роль играют эпигенетические факторы.

1.1.4.1. Метилирование ДНК в псориазе

При псориазе у генов, чувствительных к метилированию, изменена экспрессия. Так, экспрессия перфорина повышена по сравнению с визуально нормальной кожей больных [Kastelan *et al.*, 2004]. Кроме этого, при псориазе повышена экспрессия LFA-1. В настоящее время этот ген рассматривается в качестве объекта для терапии псориаза [Giblin *et al.*, 2006]. С началом изучения эпигенетических модификаций в иммунопатогенезе псориаза, эпигенетические изменения перфорина и LFA-1 позволили объяснить, как факторы внешней

среды могут быть связаны с обострением болезни [Brooks *et al.*, 2010] (рисунок 2).

Доказано, что нарушения в иммунопатогенезе псориаза связаны с патогенными Т-лимфоцитами [Prinz, 2003], в частности Т-хелперами 1 и 17, а также различными группами иммуноцитов, такими как В-клетки, моноциты, нейтрофилы и др. [Zarrabeitia *et al.*, 1989; Schon *et al.*, 2000; Rocha-Pereira *et al.*, 2004]. Исходя из результатов этих исследований, можно предположить, что иммунологическая дисфункция влияет на гемопоэз. В костном мозге больных псориазом насчитывается меньшее количество высокопролиферирующих колониеобразующих клеток (клеток-предшественников и взрослых клеток, относящихся к гранулоцитам, макрофагам и мегакариоцитам), чем в костном мозге здоровых людей. Более того, промотерные участки генов p15 и p21 в этих клетках у больных псориазом обычно гипометилированы [Zhang *et al.*, 2009].

Рисунок 2.Потенциальный механизм индукции псориаза. Факторы внешней среды служат триггерами для развития заболевания. Факторы влияют на эпигенетические механизмы, которые формируют альтернативный профиль экспрессии генов, что в сумме с наличием предрасположенности к заболеванию.

Оказалось, что способность к формированию колоний у клеток HPP-C FCs коррелирует с метилированием антиапоптотического гена p16 в этих клетках. Т.к. гиперпролиферация кератиноцитов ведет к формированию псориатических бляшек, было высказано предположение, что кератиноциты из пораженной кожи больных не вовлечены в программу апоптоза. Если предположить, что

экспрессия p16INK4 контролируется эпигенетическими механизмами, то это объясняет, почему у пациентов, демонстрирующих более высокий уровень метилирования промоторной зоны гена p16INK4, болезнь протекает в более тяжелой форме, чем у пациентов с более низким уровнем метилирования промотора этого гена [Chen *et al.*, 2008]. Ген P14ARF, являющийся гомологом гена 16INK4a, также гиперметилирован в пораженной коже больных псориазом [Zhang *et al.*, 2010], что предполагает его аналогичную роль в патогенезе псориаза.

Другим примером гена с измененным паттерном метилирования при псориазе может служить ген SHP-1. В здоровой коже этот ген участвует в регуляции процесса роста и пролиферации. Данный ген имеет два промотора. При псориазе, в активированных клетках из пораженной ткани один из регионов промотора 2 этого гена сильно деметилирован [Ruchusatsawat *et al.*, 2006].

1.1.4.2. Гистонные модификации в псориазе

В работе Zhang *et al.*,2011 был обнаружен дисбаланс в экспрессии гистоновых ацетилтрансфераз (НАТ) и гистоновых деацетилаз (НDAC) при псориазе. Авторы показали, что в мононуклеарных клетках периферической крови (PBMC) больных псориазом гистон Н4 гипоацетилирован по сравнению с мононуклеарами здоровых индивидуумов. Более того, между уровнем гипоацетилирования гистона Н4 и тяжестью болезни была замечена негативная корреляция. Например, экспрессия деацетилазы HDA C-1m в пораженной псориазом коже выше, чем в здоровой коже [Tovar-Castillo et al., 2007].

Сообщается, что изменения в экспрессии HDAC SIRT1при псориазе могут быть одной из причин гиперпролиферации кератиноцитов в пораженной ткани [Blander et al., 2009]. SIRT1 является HAД+-зависимой деацетилазой. В клетке SIRT1 вовлечена в процессы регуляции экспрессии генов, и антистрессорные механизмы. E2F1 входит в семейство транскрипционных факторов E2F, которое по сходству нуклеотидной последовательности и функциям делится на

2 группы: активаторы E2F (E2F1-3) и репрессоры E2F1(E2F4-8) [Trimarchi and Lees, 2002]. Белки, относящиеся к этому семейству, могут быть причиной изменений в частоте пролиферации клеток, поскольку ингибирование E2F связано с более низкими темпами пролиферации [Wu et al., 2001]. Показана возможность использования ингибиторов HDAC (HDAC-Is) для лечения хронических заболеваний, в частности псориаза [McLaughlin and Thangue, 2004].

Разработаны методики которые специфически лечения, влияют на метилирование ДНК. Например, антагонист фолиевой кислоты, метотрексат, который восстанавливает уровень метилирования ДНК в одноядерных клетках cell периферической крови (peripheral blood mononuclear (PBMC)), демонстрирует результаты [Zhang et al., 2011].

1.2. Механизмы регуляции экспрессии генов

1.2.1. Эпигенетическая регуляция

Примером эпигенетических модификаций ДНК может служить метилирование динуклеотидной последовательности 5'СрG3'. У млекопитающих паттерны метилирования устанавливаются в ходе эмбриогенеза и поддерживаются копирования метилирования ДНК механизмами при делении клеток. Наследуемость паттернов метилирования ДНК делает эпигенетическую маркировку стабильной во время клеточных делений, и, следовательно, составляет одну из форм клеточной памяти [Allis et al., 2007]. Долгое время метилирование ДНК рассматривалось как важный тип эпигенетического сайленсинга генов [Holliday et al., 1975]. Данная модификация играет важную роль во многих клеточных процессах, таких как транскрипция, геномный инактивация X-хромосом [Robertson, 2005]. B импринтинг И клетках млекопитающих метилирование катализируется ДНК метилтрансферазами (DNMTs) для которых донором метильной группы служит S-аденозилметионин (SAM). Перенос метильной группы при метилировании ДНК

происходит строго на 5'-конце цитозина в СрG сайте. У человека обнаружено 3 активных метилтрансферазы: DNMT1, DNMT3a и DNMT3b [Jones et al., 2002]. DNMT1 обеспечивает стабильный уровень метилирования полуметилированных сайтов ДНК, в том время как DNMT3a и DNMT3b метилируют целевые участки de novo [Goll et al., 2006].

1.2.1.1. Метилирование ДНК

ДНК рассматривалось как Долгое время метилирование важный тип эпигенетического сайленсинга генов [Holliday et al.. 1975]. Ланная модификация играет важную роль во многих клеточных процессах, таких как транскрипция, геномный импринтинг и инактивация X-хромосом [Robertson, 2005]. В клетках млекопитающих метилирование катализируется ДНК метилтрансферазами (DNMTs), для которых донором метильной группы служит S-аденозил-метионин (SAM). У человека обнаружено 3 активных метилтрансферазы: DNMT1, DNMT3a и DNMT3b [Jones et al., 2002]. DNMT1 обеспечивает поддержание стабильного уровня метилирования сайтов ДНК, в то время как DNMT3a и DNMT3b метилируют целевые участки de novo [Goll et al., 2006].

Показано, что метилированные CpG островки участвуют в привлечении HDAC и других факторов, ассоциированных с «замалчиванием» генов [Jones *et al.*, 1998]. Более того, в зависимости от сайта метилирования, данная модификация регуляторных областей генов может как положительно, так и отрицательно влиять на регуляцию транскрипции [Jones *et al.*, 2001].

1.2.1.2. Гистонные модификации

Основой хроматина является нуклеосома, которая состоит из 146 п.н. ДНК и делает 1,6 витка вокруг гистонного октамера, содержащего по 2 копии коровых гистонов: H2A, H2B, H3 и H4. Гистоновые белки могут быть модифицированы ацетилированием, метилированием, фосфорилированием и убиквитинированием [Cuthbert *et al.*, 2004]. Гистоновые модификации связаны

с регуляцией таких процессов, как деление клеток, их дифференцировка и апоптоз.

Условно говоря, хроматин может принимать две формы - закрытую и открытую [Zhang *et al.*,2012]. В закрытом состоянии доступ транскрипционных факторов к ДНК-мишени крайне затруднен. Метилированные СрG островки обычно находятся в закрытом состоянии, и ассоциированы со специфически модифицированными гистонами. Предположительно, гистоновые белки также участвуют в контроле уровня экспрессии. Наиболее изученной модификацией является ацетилирование лизина на N-терминальном конце гистона. Эта модификация, прежде всего, необходима для ослабления взаимодействия положительно заряженного гистона с отрицательно заряженной ДНК и облегчения доступа транскрипционных факторов к ДНК [Gregory *et al.*, 2001]. Как правило, ацетилирование гистонов ведет к транскрипционной активации [Bernstein *et al.*, 2007].

Метилирование лизиновых остатков гистонов является примером ковалентной модификации. Оно катализируется гистоновой метилтрансферазой (HMT) и является важным регуляторным механизмом транскрипционной регуляции. Например, метилирование H3K4 (H3 – название гистона; K4- порядковый номер остатка лизина в молекуле гистона) связано с транскрипционной активацией, тогда как метилирования по типу H3K9, H3K27 и H4K20 связаны с транскрипционной репрессией [Esteller *et al.*, 2008; Kondo *et al.*, 2008].

Многие заболевания, такие как диабет II типа, шизофрения и др., также обнаруживают наследуемую компоненту, проявляют но не четкого Динамический эпигенетический менделевского паттерна наследования. механизм позволяет объяснить принципы их наследования, а также некоторые особенности, такие как позднее начало, гендерные проявления И флуктационные изменения в их симптоматике [Petronis, 2001]. Таким образом, сравнительные исследования общегеномных паттернов метилирования ДНК в популяциях здоровых и больных представляется важной и актуальной задачей,

поскольку могут позволить установить эпигенетические основы болезней с различными генетическими мутациями.

1.2. Исследования транскриптома, метилома и интерактома псориаза 1.2.1. Полногеномный количественный анализ мРНК (RNA-Seq)

С появлением технологии RNA-Seq появилась возможность анализировать полногеномную экспрессию. Одним из первых исследований экспрессии псориаза стала статья, выпущенная Jabbari с коллегами (Jabbari A. et al., 2012). В ходе этого исследования была проанализирована экспрессия в трёх парах поражённой и здоровой кожи больных псориазом. На основе этих образцов были получены списки дифференциально экспрессирующихся генов- 776 генов имели повышенную экспрессию в поражённой псориазом коже, а 1035-пониженную.

Крупнейшим исследованием экспрессии генов в коже псориаза на сегодняшний день является исследование (Li B. et al., 2014), которое включает в себя 92 образца поражённой кожи и 82 образца здоровой кожи. В ходе данного исследования были выявлены 3577 дифференциально экспрессирующихся генов. Такое большое количество ДЭГ может быть объяснено низким порогом достоверности: $|log2FC| \ge 1$ и p.value без поправки на множественное сравнение $<1\times10$ -6, тогда как большая часть исследований предполагает отрез по $|log2FC| \ge 1.5$ и p.value с поправкой на множественное сравнение <0.01. В результате были выявлены 1049 генов с повышенной экспрессией и 2528- с пониженной.

Проведённый анализ генов позволил выявить группы генов, объяснением дифференциальной экспрессии которой стал вклад разных типов клеток в экспрессию. Помимо того, что эти образцы были проанализированы с помощью технологии RNA-seq, часть образцов были проанализированы с помощью микрочипов в предыдущих исследованиях (Gudjonsson J.E. et al., 2009). Полученные результаты позволили провести сравнительный анализ подходов,

который показал, что результаты, полученные с помощью RNA-seq и микрочипов схожи.

При этом, RNA-seq оказался более чувствителен по отношению к низкопредставленным транксриптам: 80% ДЭГ, выявленных с помощью анализа микрочипов были выявлены также в RNA-seq анализе, тогда как только 22% ДЭГ, выявленных RNA-seq были выявлены в анализе с помощью микрочипов.

Современные методы позволяют выявлять не только ДЭГ среди белоккодирующих генов, но также выявлять новые и анализировать микроРНК. Так, помощью RNA-seq на исследовании 67 образцов поражённой и здоровой коже были выявлены 284 новых ДЭ микроРНК, а также идентифицированы 613 уже известных микроРНК (Joyce C.E. et al., 2011).

Анализ экспрессии генов в коже больных псориазом позволил выявить микроРНК, которые участвую в регуляции активности кератиноцитов (*miR-135b, miR-205, miR-203-AS*), иммунных клеток (*miR-142-3p*) и в сосудистых профилях (*miR-21, miR-31, miR-378*) кожи.

Цифровой анализ экспрессии генов в коже больных псориазом позволил оценить изменения экспрессии микроРНК, которые приводят к изменениям в функционировании кератиноцитов. Результаты этого исследования также были проанализированы Xia с коллегами (Xia J. et al., 2013), где провели анализ 67 библиотек малых РНК. В ходе такого анализа выявили 21 новую неканоническую микроРНК и 39 эндогенных малых интерферирующих РНК. Среди этих списков 15 РНК являлись дифференциально экспрессирующимися в коже больных псориазом, на основе чего сделали вывод о том, что малые нкРНК могут являться регуляторами экспрессии в коже больных псориазом и играть важную роль в патогенезе заболевания.

В 2014 году Lovendorf et al (Lovendorf M.B. et al., 2014) проанализировали 6 пар биопсий с помощью лазерной микродиссекции. Такой подход использовали для

того, чтобы выявить микроРНК, специфично экспрессирующиеся в различных частях эпидермиса (в кератиноцитах эпидермиса и иммунном инфильтрате дермы). Так, были выявлены 24 микроРНК, которые являлись ДЭГ в эпидермисе, и 37- в дерме. При этом 37 мироРНК иммунного инфильтрата ранее были ассоциированы с псориазом на основе анализа РВМС больных псориазом.

В более позднем исследовании Ahn et al, 2016 провели анализ 18 образцов поражённой и здоровой псориазом кожи, а также 16 образцов кожи здоровых индивидуумов. Исследователи использовали подход анализа взвешенных сетей коэкспрессии генов (WGCNA) и выявили 3 функциональных пути, экспрессия внутри которых достоверно объясняет разницу между поражённой и здоровой кожей.

WGCNA анализ позволяет выявить подсети, которые потенциально участвуют в регуляции патогенеза заболевания даже без больших списков ДЭГ. Так, в этом исследовании только 16% генов в сетях, которые отличали поражённую от здоровой кожи являлись ДЭГ. Такой анализ выявил ассоциацию путей жирных кислот с псориазом.

В целом, стоит отметить, что целями анализа дифференциальной экспрессии в дерматологических исследованиях являются выявление новых маркеров заболеваний, усовершенствование методов диагностики заболеваний, выявление генов, которые определяют патогенез, а также разработка новых терапий. Дальнейшее удешевление и ускорение молекулярно-биологических методов позволит стать анализу экспрессии генов одной из основ разработки терапий для персонализированной медицины.

1.2.2. Анализ вклада эпигенетических компонентов в развитие псориаза

Показано, что промоторы генов p15 и p21 (ингибиторы CDK4 и CDK2 соответственно), которые играют важную роль в регуляции развития и пролиферации иммунных клеток, гипометилированы при псориазе. Возможно,

это приводит к изменению пролиферации иммунных клеток. Авторы выявили, что в костном мозге больных псориазом количество HPP-CFC клеток (клеток с высоким пролиферативным потенциалом) ниже, чем в костном мозге здоровых людей (Zhang K. et al., 2009). Помимо этого, было показано, что ген SHP-1, который является регулятором активации пролиферации, в коже больных псориазом также является мишенью для дифференциального метилирования промоторов и его промотор достоверно деметилирован в коже больных псориазом (Ruchusatsawat K. et al., 2006).

Впервые ассоциация метилирования ДНК с псориазом была показана в 2006 году в статье Ruchusatsawat et al (Ruchusatsawat, 2006), где они анализировали метилирования ДНК в промоторе гена SHP-1 при уровень помощи бисульфитной конверсии с последующим секвенированием конвертированной ЛНК. Сравнивая результаты секвенирования c референсом, получали координаты метилированных и неметилированных цитозинов. В 2010 вышла статья посвящённая анализу уровня метилирования в перифирических клетках крови (PBMC) (Zhang, 2010), которая показывала, что глобальный уровень метилирования ДНК в РВМС больных псориазом был повышен по сравнению с уровнем метилирования ДНК в крови здоровых индивидуумов.

В 2006 году компания Illumina выпустила чип для анализа 27 578 локусов метилирования ДНК Illumina Methylation BeadChip 27k, а уже в 2008- его модификацию, Illumina Methylation BeadChip 450k, которая, в свою очередь, позволяла проанализировать уровень метилирования ДНК уже более чем в 450 000 локусов. На сегодняшний момент опубликован 3 работы, в которых анализируют уровень метилирования ДНК в коже больных псориазом. Вышедшая в 2011 году статья Roberson et. al (Roberson et. al, 2011) посвящена анализу полгоненомного уровня метилирования ДНК с помощью чипов Illumina Methylation BeadChip 27k на выборке из 19 образцов поражённой, 8 образцов здоровой псориазом кожи и 8 образцов здоровой кожи. В ходе этого анализа авторы выявили список из 1108 дифференциально метилированных

сайтов. 12 из них были локализованы рядом с генами, которые участвуют в дифференциации дермы и которые описаны в литературе как дифференциально экспрессированные в поражённой псориазом коже. Также они показали ассоциацию между уровнем метилирования ДНК и экспрессией генов OAS2, S100A12 и SERPINB3, экспрессия которых значительно повышена в коже поражённой псориазом и которые являются экспрессионными маркерами псориаза. В 2015 году Gu С коллегами проанализировали уровень метилирования в коже 12 пациентов, больных псориазом, на разных стадиях UVB-терапии (терапии ультрафиолетом) и 12 здоровых пациентов. При этом они выявили 3 665 дифференциально метилированных локусов, из которых только 14 были локализованы одновременно в промоторе гена и в CpGостровках. РСА-анализ показал, что, в целом, образцы, полученные от больных псориазом после UVB-терапии, группируются с образцами здоровой кожи, что говорит о возможности использования здоровой кожи в качестве контроля в анализу дифференциального метилирования экспериментах по ДНК В поражённой и здоровой коже (Рисунок 3).

Наиболее обширное исследование уровня метилирования ДНК при псориазе провели Zhou с коллегами на платформе Illumina Methylation BeadChip 450k (Zhou et. al, 2017). Исследование включает в себя 219 образцов, из них 114 образцов взяты из поражённой кожи, 62 образца - из здоровой кожи и 41 образец - из визуально здоровой кожи больных псориазом. Дифференциально метилированными сайтами исследователи считали только сайты, у которых разница между группами по beta-value была больше 0.1, а p.value теста Уилкоксона после поправки Бонферрони <0.05. Всего при сравнении поражённой кожи со здоровой были выявлены 867 гиперметилированных и 647 гипометилированных локуса. Наиболее значимые ДМЛ (дифференциально метилированные локусы) были локализованы в теле гена SYTL3, белковый продукт которого участвует в везикулярном транспорте (Fukuda and Mikoshiba, 2001). Некоторые из ДМЛ участвовали в дифференциации эпидермы: *S100A13*,

S100A10 и *S100A5*гиперметилированы в поражённой псориазом коже, в то время как *S100A9*, *S100A8*, и *S100A7A* были гипометилированы.

Рисунок 3. Анализ главных компонент псориатической кожи до, во время и после терапии ультрафиолетом и здоровых образцов кожи (Gu, 2015).

Эти локусы были локализованы в регионе TSS1500, т.е. на расстоянии 1 500 от точки старта транскрипции. Шесть разных белков S100A были дифференциально метилированы, что позволило предложить гипотезу о важной роли метилирования ДНК в регуляции активности этих генов и в патогенезе псориаза (<u>Kypriotou et al., 2012</u>).

1.2.3. Анализ транскрипционных факторов, регулирующих сигнальные каскады, приводящие к развитию псориаза

На данный момент одним из важнейших регуляторов псориаза считается NFKB1, но существует ряд исследований, которые направлены на ассоциацию новых транскрпиционных факторов с псориазом. NFKB1 конститутивно активируется в псориатическом эпидермисе. Однако точный механизм влияния

активности NFKB1 на развитие гиперпролиферации кератиноцитов при псориазе на сегодняшний день не установлен. В 2015 году Moriwaki с коллегами показали, что активация NFKB1, вызванная воспалительными цитокинами, индуцирует транскрипцию микроPHK (miRNA) miR-31, которая является одной из самых активных miRNAs, идентифицированных в коже пациентов с псориазом и моделей мыши. Низкая концентрация miR-31 в кератиноцитах ингибирует их гиперпролиферацию, уменьшает акантоз и снижает тяжесть заболевания в моделях мышей псориаза. Ингибирование *PPpp6c* функционально важно для miR-31-опосредованных биологических эффектов. Более того, активация *NFKB1* ингибирует экспрессию Ppp6c непосредственно через индукцию *miR-31* и усиливает пролиферацию кератиноцитов.

В 2015 году Yin с коллегами исследовал свойства SLURP-1 и SLURP-2, новых ацетилхолиновых рецепторов Ach, элементов nAChR-опосредованного пути, которые участвуют в регуляции кератинизации. Некоторые эндогенно экспрессируемые белки Ly6SF (такие как LYNX1, SLURP-1 и SLURP-2) модулируют функцию *nAChR* как аллостерические или ортостерические модуляторы или как антагонисты. Хотя экспрессия и функции SLURP-1 и SLURP-2 в кератиноцитах хорошо документированы, экспрессия и способы действия LYNX1 в кератиноцитах неизвестны. Кроме того, сообщается о конкретном гибридном транскрипте LYNX1-SLURP2, который содержит последовательности LYNX1 и SLURP-2 с неизвестной функцией. Хотя SLURP2 представляет собой ген, индуцированный при псориатических поражениях кожи, механизмы, контролирующие экспрессию SLURP2, в значительной степени неизвестны. Чтобы лучше понять функцию nAChRs в кератиноцитах, Yin с коллегами исследовали профили экспрессии LYNX1, LYNX1-SLURP-2 и SLURP-2 в кератиноцитах при различных воспалительных состояниях. Они обнаружили, что кератиноциты экспрессируют LYNX1 и SLURP2, но не LYNX1-SLURP2, на уровне мРНК и белка. Обработка IL-22 увеличивала экспрессию SLURP2 в кератиноцитах, но этот эффект был полностью отменен IFN-у. Кроме

того, индуцированная IL-22 повышенная регуляция SLURP2 была полностью подавлена ингибитором или siRNA STAT3, основного транскрипционного фактора-репрессора IL-22. Эти данные дают новое представление 0 контролируемом *nAChR* регулятивном механизме экспрессии *SLURP-2* в кератиноцитах. В 2017 году Khan et al рассмотрели индукцию и функцию *IL-17* в отношении аутоиммунных заболеваний. В последние годы на IL-17A (IL-17), провоспалительный цитокин, было обращено пристальное внимание исследователей и врачей, которые показали активность этого цитокина при воспалении и аутоиммунных заболеваниях. IL-17 мобилизует, рекрутирует и активирует различные клетки для увеличения воспаления. Тем не менее, повышенная активность *IL-17* способствует воспалению при аутоиммунных заболеваниях, таких как рассеянный склероз, ревматоидный артрит, псориаз и другие. Установлено, что регулирование уровней IL-17 или действия с использованием IL-17-блокирующих антител или антагониста IL-17R ослабляет экспериментально вызванные аутоиммунные заболевания. На сегодняшний день стало известно, что, помимо IL-17-специфического транскрипционного фактора RORуt, некоторые другие транскрипционные факторы и микроРНК (miRNA) регулируют *IL-17*. Учитывая, что miRNAs альтернативно регулируются при аутоиммунных заболеваниях, лучшее понимание влияния транскрипционных факторов и miRNA на экспрессию и функции IL-17 будет иметь важное значение для разработки новых методов лечения.

В работе 2014 года наша группа [Zolotarenko et al, 2014] провела анализ дифференциальной экспрессии на 14 парах биопсий, оценили обогащение генных сетей Metacore ДЭГ-мишенями и выявили транскрипционные обогащенных сетей. Такой позволил регуляторы генных подход идентифицировать 42 основных транскрипционных регулятора заболевания, связанных с каскадами воспаления (NF κ B, IRF9, JUN, FOS, SRF), активностью Т-клеток при псориатических поражениях (STAT6, FOXP3, NFATC2, GATA3, TCF7, RUNX1), гиперпролиферацией и миграцией кератиноцитов (JUN, FOS, NFIB, TFAP2A, TFAP2C) и липидным обменом (TFAP2, RARA, VDR). В

дополнение к основным регуляторам были идентифицированы 38 факторов транскрипции, ранее не связанных с заболеванием, которые могут прояснить Чтобы патогенез псориаза. проиллюстрировать эти результаты, была одного ИЗ идентифицированных проанализирована регуляторная роль транскрипционных факторов (ТФ), FOXA1. Используя данные ChIP-seq и RNAseq, авторы пришли к выводу, что активность FOXA1 играет важную роль в патогенезе псориаза, поскольку он ингибирует созревание наивных Т-клеток в (CD4 + FOXA1 + CD47 + CD69 + PD-L1 (hi) FOXP3-) регуляторной субпопуляции Т-клеток, что способствует развитию псориатических поражений кожи.

В 2018 вышла статья, которая уточняет роль комплекса JAK/STAT в патогенезе псориаза (Johansen, 2018). Предполагается, что сигнальный путь JAK / STAT играет важную роль в патогенезе псориаза, и недавно ингибиторы JAK/STAT многообещающие показали результаты В лечении псориаза. Целью обсуждаемого исследования было охарактеризовать роль STAT2 в псориазе. Были продемонстрированы повышенная экспрессия STAT2 и повышенный уровень фосфорилированного/активированного STAT2 в пораженной по сравнению с здоровой псориатической кожей. Ингибирование STAT2 с помощью siRNA в кератиноцитах человека показало, что при стимуляции IFNa *CXCL11* и *CCL5* регулируются через *STAT2*-зависимый механизм. Более того, регулирование CXCL11 и CCL5 зависело от IRF9, но не от STAT1 и STAT6. Экспрессия CXCL11 и CCL5 была увеличена по сравнению со здоровой псориатической кожей. И анализ продемонстрировал положительную корреляцию между экспрессией *CXCL11* и IFN_γ и между экспрессией *CCL5* и IFNу в псориатической коже. Напротив, не было обнаружено корреляции между экспрессией CXCL11 и IL-17А и экспрессией CCL5 и *IL-17*А в псориатической коже. Полученные данные свидетельствуют о том, что STAT2 играет роль в патогенезе, регулируя экспрессию CXCL11 и CCL5 и привлекают иммунные клетки IFN_γ в кожу.

В целом, список активных транскрипционных факторов, участвующих в псориазе, довольно консервативен. Тем не менее, большое количество исследований, нацеленных на изучение роли различных ТФ в патогенезе псориаза, либо охватывают очень небольшой диапазон ТФ из-за точечного анализа, либо оценивают активность транскрипционных факторов в патогенезе псориаза посредством обогащения генных сетей. Поэтому актуальным является вопрос разработки метода, который бы позволил выявлять непосредственно связь ТФ-мишень, что, возможно, позволит выявить наиболее важные транскрипционные факторы для патогенеза псориаза.

ГЛАВА 2. МАТЕРИАЛЫ И МЕТОДЫ

2.1. Забор образцов кожи больных псориазом и здоровых индивидуумов

Все больные подписывали информированное добровольное согласие. Исследование было одобрено Локальным комитетом по этике при Институте общей генетики РАН и соответствует принципам, изложенным в декларации Хельсинкского соглашения.

Забор биоптатов кожи больных псориазом Psoriasis vulgaris (бляшечного типа) из визуально пораженного участка кожи больных псориазом пациентов и кожи здоровых пациентов проводили под местной анестезией с помощью дерматологического пробойника (4 мм²). Пациенты не получали какой-либо системной или PUVA/UV терапии в течение одного месяца до биопсии. Образцы быстро замораживали в жидком азоте вплоть до определения биохимических параметров, время от начала процедуры забора биоптатов до замораживания не превышало 45 секунд. Всего в анализ вошли данные из 18 биопсий кожи, поражённой псориазом и 6 биопсий кожи здоровых индивидуумов.

2.2. Выделение ДНК из образцов кожи

Перед выделением нуклеиновых кислот из биопсий кожи образцы измельчали на дезинтеграторе TissueLyser LT Qiagen в течение 30 мин. с частотой 50 гЦ. Выделение ДНК из биопсии кожи проводили, используя Qiagen DNeasy kit согласно протоколу производителя. Для этого отбирали гомогенат ткани в 1,5 мл пробирку и добавляли 350 µl буфера RLT, после чего пробу перемешивали с буфером.

Лизат ткани центрифугировали 3 мин. в режиме 14 200 об./мин, после чего бережно переносили супернатант в новую микроцентрифужную пробирку пипеткой. К супенатанту добавляли 350 µl 70% EtOH, перемешивали пипетированием и наносили на RNeasy column. Колонку центрифугировали 15 сек в режиме 11 500 об./ мин, после чего сток использовали для дальнейшего

выделения ДНК, а РНК, осевшую на колонке, выделяли далее по протоколу. Для этого на колонку наносили 700 µl буфера RW1, центрифугировали колонку 15 сек и удаляли осадок из собирательной пробирки. После этого на колонку наносили 500 µl буфера RPE, центрифугировали колонку 15 сек в режиме 11 500 об./мин. и удаляли осадок. Снова добавляли 500 µl буфера RPE, центрифугировали 11 500 об./ мин., после чего переносили колонку в 1,5 мл пробирку и дважды провали 25 µl RNase-free water в течение 1 мин. в режиме 11 500 об./мин.

Выделение ДНК из биопсии кожи проводили, используя Qiagen DNeasy kit согласно протоколу производителя. К стоку, полученному во время выделения РНК по протоколу Qiagen RNeasy kit, добавляли 250 µl 100% EtOH, после чего пробирки замораживали на 1-2 часа при температуре -20- -80° С. Сток центрифугировали 15 сек со скоростью 10 000 об./мин. в холодной центрифуге на 4 С. Супернатант удаляли и ресуспендировали в 180 µl буфера ATL с 20 µl Протеиназы-К. Смесь нагревали в водяной бане при 56° С 3 ч. После чего пробирки перемешивали на вортексе 15 с. и добавляли 200 µl буфера AL. Содержимое пробирки перемешивали на вортексе и добавляли 200 µl 100% EtOH. Смесь наносили на DNeasy mini-column и откручивали на центрифуге в течение 1 мин. со скоростью 9750 об./мин. и выливали сток. Колонку откручивали еще раз и переносили в новую пробирку. Промывали 500 µl буфера AW1, центрифугировали 1 мин. со скоростью 9750 об./мин. Сток сливали, после чего провали колонку 500 µl буфера AW2, центрифугировали 1 мин. со скоростью 9 750 об./мин. Колонку перемещали в новую пробирку и центрифугировали 3 минуты на максимальной скорости для просушки мембраны. Колонку переносили в новую 1,5 мл пробирку, инкубировали 1 мин. с 50 µl буфера АЕ, после чего центрифугировали 1 мин. на скорости 9750 об./мин. для смывания ДНК с мембраны. Процесс повторяли еще раз для полноты осаждения ДНК со стенок колонки.

2.3. Анализ уровня метилирования ДНК с помощью чипов метилирования Illumina Methylation BeadChip450k

Полученную ДНК подвергали бисульфитной конвертации, используя Zymo EZ DNA Methylation Kit согласно инструкции производителя. Смесь ДНК и конверсии инкубировали 16 реактива для циклов при следующих температурных режимах: 95С в течение 30с; 50С в течение 1 ч. Далее проводили отмывку бисульфидно-конвертированной ДНК (БКД) с помощью колонок, а БКД смывали буфером для элюции. 20 мкл буфера МА1 переносили на плашку MSA4 и добавляли 4 мкл БКД. После этого добавляли 4 мкл 0,1 М NaOH. Образцы встряхивали в течение 1 мин и центрифугировали 15 с при ускорении 280g для осаждения раствора на дно плашки. К образцу последовательно добавляли 68 мкл буфера RPM и 75 мкл буфера MSM. Образцы еще раз встряхивали в течение 1 мин и центрифугировали в режиме 280g для осаждения раствора на дно плашки. Образцы инкубировали в Illumina Hybridization Oven в течение 24 ч при температуре 37°С. На следующем этапе осуществляли ферментативную фрагментацию образцов ДНК. Для этого к каждому образцу БКД добавляли 50 мкл буфера FMS и встряхивали в течение 1 мин и центрифугировали в режиме 280g для осаждения раствора на дно плашки. После чего образцы инкубировали в течение 1 ч при температуре 37°С. Затем образцы фрагментированной ДНК подвергали переосаждению, для чего добавляли 100 мкл буфера PM1, встряхивали В 1 течение МИН, центрифугировали при ускорении 280g для осаждения раствора на дно плашки. Для осаждения ДНК к раствору добавляли 300 мкл 100% изопропанола, пробы перемешивали и инкубировали при температуре 4°С в течение 30 мин, после этого образцы центрифугировали при температуре 4°С в режиме 3000g в течение 30 мин. ДНК растворяли в 46 мкл буфера RA1. Образцы инкубировали в Illumina Hybridization Oven в течение 1 ч при температуре 48°C. На следующем этапе образцы ДНК гибридизовали с BeadChips. Для этого образцы ДНК денатурировали при температуре 95°С в течение 20 мин, после этого охлаждали при комнатной температуре в течение 30 мин. 400 мкл буфера PB2 добавляли в BeadChip Hyb Chamber, затем, используя многоканальную пипетку, добавляли 15 мкл ДНК к BeadChip. BeadChip Hyb Chamber с образцом ДНК помещали в Illumina Hybridization Oven и инкубировали при температуре 48°C в течение 16 ч (но не более 24 ч). После гибридизации чип промывали в реагенте XC4 (предварительно смешивали 330 мл этанола и 20 мл буфера XC4) и высушивали при комнатной температуре. После гибридизации проводили окрашивание микрочипов. Для этого чипы погружали в 200 мл буфера PB1 в течение 1 мин. После этого нагревали Chamber Rack до температуры 44°С и помещали в него чип, затем последовательно добавляли 150 мкл буфера РА1 выдерживали в течение 30 с и повторяли 5 раз, добавляли 450 мкл буфера XC1 и инкубировали в течение 10 мин, 450 мкл буфера XC2 и инкубировали в течение 10 мин, 200 мкл буфера ТЕМ и инкубировали в течение 15 мин, 450 мкл 95% формамида/1 мМ ЭДТА и инкубировали в течение 1 мин, 450 мкл буфера ХСЗ и инкубировали в течение 1 мин. Для завершения окрашивания в резервуар с чипом последовательно добавляли 250 мкл буфера STM и инкубировали в течение 10 мин, 450 мкл буфера ХСЗ и инкубировали в течение 1 мин, 250 мкл буфера АТМ и инкубировали в течение 10 мин, 450 мкл буфера XC3 и инкубировали в течение 1 мин, 250 мкл буфера STM и инкубировали в течение 10 мин, 450 мкл буфера XC3 и инкубировали в течение 1 мин, 250 мкл буфера АТМ и инкубировали в течение 10 мин, 450 мкл буфера XC3 и инкубировали в течение 1 мин, 250 мкл буфера STM и инкубировали в течение 10 мин, 450 мкл буфера XC3 и инкубировали в течение 1 мин. После завершения окрашивания чипы промывали в 310 мл буфера PB1 и 310 мл раствора XC4. Чип высушивали при пониженном давлении 675 мм рт. ст. в течение 50—55 мин. На заключительном этапе чипы сканировали при помощи HiScanSQ System («Illumina Inc.», CIIIA). Полученные изображения анализировали с помощью биоинформатических методов. Для выделения метилирования ДНК из сканированных сигналов чипов использовали обеспечение GenomeStudio® (версия 2011.1; программное модель метилирования версия 1.9.0, «Illumina Inc.»). Данные метилирования были

получены из сырых сигналов без выделения фона или нормализации данных. Наблюдаемые значения β — это уровень метилирования для каждого CpG, которые варьируют от 0 (неметилированные, U) до 1 (полное метилирование, M) на непрерывной шкале; рассчитывали интенсивность аллелей со значениями M и U как показатель сигнала флюоресценции по формуле:

$$\beta = \frac{Max (M, 0)}{Max (M, 0) + Max (U, 0) + 100}$$

Полученные beta-значения использовали для дальнейшей обработки.

2.4. Мета-анализ данных по генной экспрессии поражённой и здоровой кожи

База данных по метилированию и экспрессии генов при псориазе была собрана при помощи поисковых инструментов Pubmed. Кроме поиска самих статей, также были изучены статьи, где авторы ссылаются на найденные статьи, для поиска наиболее актуальных данных. В статьях с опубликованными данными был приложен идентификатор в базе Gene Expression Omnibus (GEO) – таким заполнен лист "GEO", с указанием идентификаторов, образом, был количеством образцов и технологией секвенирования, все спорные моменты отражены в столбце "примечание". Используя SRA Run Selector и SRP ID из GEO, была получена информация обо все образцах данного дата-сета – таким образом был составлен список «Samples», в котором отражена вся известная информация о каждом образце. Для скачивания данных экспресии генов, был использован инструмент NCBI SRA Toolkit. С помощью prefetch и опции -v были скачены файлы в формате .sra, после чего, используя fastq-dump, все файлы из формата .sra были преобразованы в fastq формат. Список экспериментов, которые мы включили в работу, и образцы из этих экспериментов приведены в таблицах в приложении (Приложение, таблица 1).

2.5. Мета-анализ данных по метилированию ДНК в поражённой и здоровой коже

Базу данных по метилированию ДНК, полученную с помощью чипов метилирования Illumina BeadChip 450k мы собрали, аналогично базе данных RNA-seq, проанализировав все существующие материалы, в которых измеряли уровень метилирования ДНК в коже больных псориазом и здоровых людей. Работы, необработанныне данные для которых были выложены в GEO datasets, вошли в исследование. Всего в исследование вошли данные 4 исследований: кожи=12, поражённой=12). GSE63315 (количество здоровой GSE73894 (количество здоровой кожи=62, поражённой=135), GSE115797 (количество поражённой кожи=24) и данные, полученные нами (количество здоровой кожи=9, поражённой=18) (приложение, таблица 2). Сырые графические данные, анализе чипов метилирования ЛНК. полученные при анализировали. аналогично метилирования, которые были получены в чипам нашей помощью GenomeStudio® (версия раборатории, с 2011.1; модель метилирования версия 1.9.0, «Illumina Inc.»). Полученные значения для каждой пробы использовали для дальнейшего анализа (см. п. 2.8).

2.6. База данных результатов иммунопреципитации хроматина ChipBase v2.0

Для аггрегации базы данных сайтов посадки транскрипционных регуляторов мы выбрали базу данных ChipBase 2.0 [Zhou, 2017]. Эта база данных на данный момент содержит 5 803 обработанных эксперимента по иммунопреципитации хроматина человека, в том числе 2 498 эксперимента по иммунопреципитации транскрипционных факторов человека. В данной работе для изучения мы выбрали класс транскрипционных факторов как наиболее представленный в базах данных класс транскрипционных регуляторов. Всего в базе данных ChipBase 2.0 содержится информация о 475 различных транскрипционных Для чтобы факторах человека. того проанализировать обогащение транскрипционных факторов генами-мишенями, мы получили обсчитанные
результаты экспериментов с точками сайтов связывания транскрипционных фактров в регуляторных областях их мишеней. Диапазон регуляторной области брали стандартную, [-1kb;+1kb] от точки старта транскрипции. На выходе для каждого эксперимента мы получили таблицу стандартизированного выхода для ChipBase 2.0, содержащую информацию о сайтах посадки того или иного транскрипционного фактора в окрестностях TSS (точки старта транскрипции) гена для каждого из экспериментов.

2.7. Поиск транскриптов с дифференциальной экспрессией

Для начала все fastq файлы были исследованы на качество, а также наличие адаптеров и длину ридов с помощью FastQC с параметрами по умолчанию. Далее файлы подверглись обработке с помощью программы Trimmomatic с параметрами ILLUMINACLIP:TruSeq3.fa:2:30:10; LEADING:3; TRAILING:3; SLIDINGWINDOW:4:15; MINLEN:36, где TruSeq3.fa - файл содержащий адаптеры. Повторная проверка показала с помощью FastQC, что остались риды высокого качества, а адаптеры удалены.

Для выравнивания ридов на геном использовалиSTAR версии 2.6.0a с параметрами: --readFilesCommand zcat; --outSAMtype BAM Unsorted; outReadsUnmapped Fastx; --outSAMmode Full; --runThreadN \$N CPUS: outSAMstrandField intronMotif; --outFilterIntronMotifs RemoveNoncanonical. Для нормализации данных и расчета FPKM использовались библиотека edgeR и пайплайн, аналогичный описанному в статье [Wang, 2016]. Получив матрицу нормализованных значений FPKM, приступили к её обработке. С помощью edgeR получены нормализованные пакета были данные оценена И дифференциальная За достоверную дифференциальную экспрессия. экспрессию гена мы принимали изменения экспрессии более чем в 2 раза (Log Fold-Change $\geq \pm 1.5$) и уровне значимости p-value с поправкой FDR<0.01.

2.8. Поиск локусов с дифференциальным метилированием ДНК

Infinium Обработку результатов, полученных с помощью Illumina HumanMethylation450 BeadChip, проводили с помощью пакета программной среды R IMA версии 3.1.2 (R/Bioconductor - http://ima.r-forge.r-project.org/). Модуль позволяет загрузить данные с платформы Illumina и обеспечивает необходим функции для проведения анализа метилирования. Для выделения метилирования ДНК из сканированных чипов использовали сигналов обеспечение GenomeStudio® (версия 2011.1; программное модель метилирования версия 1.9.0, Illumina Inc.). Препроцессинг проводили с помощью функции IMA.methy450PP пакета IMA. После того, как с помощью функции IMA.methy450PP отбирали CpG по detection p-value (<0.01), проводили коррекцию пиков. Для дальнейшей коррекции пиков значения bзначения подвергались квантильной нормализации. На последнем этапе были готовы для дифференциального анализа уровня метилирования генов, но для устранения batch-эффекта (случайной разницы между экспериментов из-за оборудования реактивов) различного И ненормализованные между экспериментами значения, их нормализовывали с помощью пакета ComBat для R.. Нормализованные значения b-value использовали для получения списка дифференциально метилированных локусов. Для этого мы считали среднее значение метилирования ДНК локуса внутри группы, после чего получали метилирования ДНК разницу среднего между группами И считали достоверность разницы между векторами групп метилирования с помощью ttest. Локус считали достоверно дифференциально метилированным, если разница beta-значений была по модулю больше 0.1, а p.value t-теста с поправкой FDR был меньше 0.01. Т.к. пробы на чипе Illumina Methylation BeadChip 450k аннотированы hg17 hg18, только геномы И а результаты на иммунопреципитации хроматина в ChipBase 2.0 аннотированы с hg19, координаты проб модифицировали для соответствия hg19-сборке с помощью пакета R 3.4.4 rtracklayer v1.38.3 и GenomeiRanges 1.30.3.

2.9. Сборка орграфа генных сетей из результатов экспериментов, содержащихся в базе данных ChipBase v2.0

После аггрегации всех списков ТФ -> ген-мишень, мы получили базу данных сайтов посадки транскрипционных факторов в диапазоне [-1kb:1kb] нуклеотид от точки старта транскрипции. С помощью пакета igraph v1.0.1 мы получили направленный граф $G = \{N, E\}$, состоящий из наборов вершин $\{N\}$ и ребёр $\{E\}$. Вершины графа {N} содержат гены и атрибут type, где атрибут type- фактор из двух уровней: target, если вершина является белок-кодирующим геноммишенью для ТФ, либо ТФ, если вершина является транскрипционным фактором. Ребро $\{E\}=\{N1, N2\}$ существует и ориентировано $\{N1->N2\}$, если из пары узлов {N1, N2} N1 является транскрипционным фактором, а N2мишенью для этого транскрипционного фактора согласно базе данных ChipBase v2.0. Такому ребру присвоены атрибуты tissue, binding site и TSS dist. Атрибут tissue содержит информацию о ткани, в которой был детектирован сайт связывания, binding site содержит информацию о диапазоне нуклеотид, на которых были достоверно детектированы пики эксперименте В иммунопреципитации хроматина этого ТФ рядом с TSS гена-мишени, а TSS dist содержит информацию об удалённости локуса сайта связывания $T\Phi$ от TSS гена.

2.10. Обогащение списка мишеней транскрипционных факторов дифференциально экспрессирующимися генами

В рамках данного анализа мы оценивали обогащение списка транскрипционных факторов, полученных из базы данных ChipBase v2.0 генами-мишенями из списка дифференциально экспрессирующихся генов. Для каждого транскрипционного фактора рассчитывается значение p-value по формуле гипергеометрического распределения и показывает вероятность получить список ДЭГ для каждого ТФ известного размера случайно при заданных значениях:

$$\mathrm{P}(k=x)=rac{{\binom{D}{k}\binom{N-D}{n-k}}}{{\binom{N}{n}}}$$

где N- общее число генов в графе ChipBase, n- количество генов, являющихся мишенями для конкретного ТФ, D- общее количество ДЭГ в списке, a k-количество ДЭГ, которые являются мишенями для транскрипционного фактора.

После подсчёта ТФ сортируются по значению p-value. Для каждого ТФ рассчитывается величина Z-значений гипергеометрического обогащения, которая представляет собой отклонение наблюдаемого числа мишеней для ТФ от ожидаемого, выраженное в единицах стандартного отклонения.

2.11. Идентификация графов активных транскрипционных факторов с помощью локального графа максимальной взаимной информации

Алгоритм построения графа, содержащего активные ТФ, взаимодействующие с геном-мишенью, состоит в следующем (рисунок 4):

- На вход программе подаётся список ДЭГ в виде линейного вектора, вектор фенотипов образцов в том порядке, в котором они расположены в матрице экспресии, матрица экспрессии, где колонка- экспрессия для генов в одном образце в RPKM, а строчка- экспрессия по образцам для одного гена и граф в формате igraph;
- На первом этапе алгоритм проверяет наличие всех генов, содержащихся в матрице экспрессии на предмет наличия этих генов как узлы орграфа, поданного на вход, гены, которые не содержатся в графе, удаляются из матрицы экспрессии;
- 3) Матрица экспрессии Z-нормируется;

Рисунок 4. Принципиальная схема алгоритма поиска максимально локального графа и тесты для определения устойчивости этого графа как графа-маркёра.

4) Между вектором экспрессии каждого ДЭГ и вектором фенотипов считается занчение взаимной информации по формуле:

$$I(X;Y) = \int_Y \int_X p(x,y) \log\left(rac{p(x,y)}{p(x) p(y)}
ight) \, dx \, dy$$

где I(X;Y)- значение взаимной информации для вектора экспрессии и вектора фенотипов, X- вектор фенотипов, а Y-вектор экспрессии для конкретного гена.

- 5) На основе каждого ДЭГ, содержащегося в графе, выполняется алгоритм жадного подбора подграфа с максимальной МІ между усреднённым вектором экспрессии узлов подграфа и вектором фенотипов по жадному алгоритму (Рисунок):
- Для подграфа считается МІ между усреднённым уровнем экспрессии подграфа и вектором фенотипов;
- 2. Для каждого элемента подграфа выявляется список соседних узлов с атрибутом type=TF;
- 3. Для каждой пары узел-подграф считается усреднённое значение экспрессии между ними;
- 4. Для такой пары вычисляется взаимная информация между вектором усреднённой экспрессии и вектором фенотипов;
- 5. Если есть пара со значением МІ больше, чем значение МІ между исходным подграфом и вектором фенотипов, узел-ТФ добавляется к подграфу;
- 6. Если пары со значением MI больше, чем значение MI подграфа нет, алгоритм прерывается

Рисунок 5 Жадная сборка подграфа активных ТФ. Построение начинается с некоторого ТФ (узел 6), имеющего гены-мишени (2, 5, 7, 10). Случайно выбирается тестовый узел (5) добавляется в подграф и вычисляются усредненные экспрессии генов (5) и (6). Если МІ вектора усредненных экспрессий и вектора фенотипов превосходит МІ вектора фенотипов и исходного узла (6), узел (5) добавляется в подграф. Если узел (5) – ТФ, то к списку тестовых узлов добавляются его мишени (4, 9). Добавление тестовых узлов к подграфу продолжается до тех пор, пока остаются узлы-соседи подграфа добавление которых в усредняемые экспрессии приводит к увеличению МІ вектора усредененных экспрессий и вектора фенотипов.

Чтобы оценить, насколько локальный подграф G размера n и значение графа MI(G) были получены случайно, мы применяли пермутационные тесты:

- 1) Пермутационный тест на основе случайного графа аналогичного размера:
- і. Для каждого подграфа 10,000 итераций набирается случайный граф размера п и для него вычисляется значение МІ между усреднённым значением экспрессии и вектором фенотипов;
- іі. Для получения p-value, считается количество таких графов, когда MI>=MI(G).
 Тогда p-value будет отношением количества графов с MI>=MI(G) к количеству итераций.

2) Пермутационный тест на основе случайного графа с аналогичным зерном:

- і. Для подграфа, содержащего только ДЭГ выявляются узлы, связанные с ним;
- іі. К подграфу случайно присоединяется узел;
 - 1. Для полученного подграфа выявляются узлы, связанные с ним;
 - 2. Итерация повторяется до тех пор, пока не будет получен подграф размера n;
 - 3. Для полученного подграфа вычисляется МІ усреднённого значения экспресии и вектора фенотипа;
 - Для получения p-value, считается количество таких графов, когда MI>=MI(G). Тогда p-value будет отношением количества графов с MI>=MI(G) к количеству итераций.

2.12. Программная реализация алгоритмов и доступ к приложению

Используемые алгоритмы и статистическая обработка реализованы в R 3.4.3 (2017-11-30) с использованием пакетов infotheo 1.2.0, igraph 1.0.1, IMA 3.1.2, limma 3.7, data.table 1.11.8, GenomocRanges 1.14.0, ggplot2 3.0.0, Bsgenme 1.46.0, biomaRt 2.34.2, rstudioapi 0.8, annotate 1.56.2.

Приложение также доступно по ссылке:

https://docs.google.com/spreadsheets/d/1p8m1t0MP70nQwFYB4ZC43t3-VSk9ND7vUwoN3W5k8Io/edit?usp=sharing

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

3.1. Принципиальная схема исследования

Рисунок 6. Принципиальная схема исследования. Серые блоки - входные данные, жёлтые и синие блоки - промеждуточные результаты, зелёный блок - конечный результат исследования.

Для того, чтобы оценить роль эпигенетических факторов в развитии псориаза, было необходимо оценить влияние метилирования ДНК на экспрессию генов, роль транскрипционных факторов в изменении экспрессии генов между поражённой и здоровой кожей, а также оценить возможную роль метилирования ДНК в регуляции связывания транскрипционных факторов с ДНК (рисунок 6). Поэтому на первом этапе работы мы проанализировали все

доступе полученные ИЗ RNA-seq находящиеся открытом данные, В экспериментов ПО псориазу, выявили списки дифференциально экспрессирующихся между поражённой псориазом и здоровой кожей генов (далее ДЭГ), а также оценили обогащение функциональных групп генов ДЭГ. На втором этапе мы оценивали различия уровеней метилирования ДНК между поражённой и здоровой кожей, а также оценивали обогащение сигнальных каскадов генами с дифференциально метилированными локусами между поражённой и здоровой кожей (далее ДМЛ). После того, как мы оценили уровень дифференциальной экспрессии и дифференциального метилирования ДНК, мы проводили поиск закономерностей между уровнями экспрессии и профилями метилирования ДНК в функциональных регионах. На следующем этапе работы мы выявляли транскрипционные факторы, которые участвуют в псориатической патологии. Для этого ΜЫ собрали регуляции базу транскрипционных факторов (далее ТФ) и их мишеней, пользуясь архивами экспериментов по иммунопреципитации хроматина ChipBase 2.0. Из этих данных мы организовали орграф всех возможных ТФ и их мишеней и, проведя обогащение дифференциально экспрессированными при псориазе генами, идентифицированными в нашей работе, смогли выявить список ТФ, наиболее важных для псориаза. Для того чтобы выявить активные ТФ, мы использовали алгоритм сборки графа с максимальной информацией. И на последнем этапе работы мы оценивали пересечение сайтов связывания ТФ с дифференциально метилированными сайтами или с локусами, для которых была обнаружена корреляция между экспрессией и метилированием ДНК.

3.2. Оценка полногеномных профилей экспрессии в псориазе с помощью мета-анализа

Псориаз - это сложное многофакторное иммуноопосредованное заболевание, в основе которого лежит дифференциальная активность большого количества генов и альтернативная активность крупных сигнальных каскадов, которые участвуют в инициации и развитии воспаления и дальнейшем патогенезе

псориаза. Для того чтобы выявить гены, экспрессия которых отличается между поражённой и здоровой кожей, применяют различные методы, такие как анализ чипов экспрессии, а также полногеномное секвенирование транскриптома (RNA-seq). В данной работе мы создали базу данных, содержащую результаты экспериментов по анализу экспрессии в поражённой псориазом и здоровой коже, аггрегировав ее из всех статей по данной тематике, содержащихся в базе данных NCBI Pubmed. Эти статьи содержали эксперименты по анализу псориатического транскриптома, реализованные, в основном, на платформах Illumina Genome Analyzer и Illumina HiSeq. Помимо данных, полученных на линейки Illumina, в собранной секвенаторах нами коллекции также содержались результаты исследований экспрессии генов, полученные с помощью платформ AB Genetic Analyzer, AB SOLiD 4, а также чипов анализа генной экспрессии линейки Affymetrix Human Genome. В данном исследовании нас интересовали экспрессионные профили, полученные именно при анализе поражённой кожи больных псориазом и кожи здоровых индивидуумов, поэтому эксперименты, которые содержали экспрессионные данные, полученные на клеточных моделях заболевания, в исследование не вошли (Приложение, таблица 1). Всего в собранную нами базу вошли данные по экспрессии генов в 227 образцах поражённой псориазом кожи и в 139 образцах здоровой кожи, что на данный момент является наиболее масштабным мета-анализом экспрессии генов между поражённой псориазом и здоровой кожей. Прочтения в формате .SRA были преобразованы в .fastq формат, после чего были произведены процедуры тримминга и выравнивания триммированных прочтений на геном hg38 с помощью программы STAR 2.6.0a. Для получения матрицы FPKM последующий анализ производили в среде R с помощью пакета DESeq2. Из полученной матрицы FPKM мы смогли оценить среднюю экспрессию генов по группам (рассчитав показатель Log Fold-Change), a также оценить достоверность дифференциальной экспрессии с помощью т-теста Стьюдента с За применением поправки FDR Бенджамини-Хохберга. достоверную дифференциальную экспрессию гена мы принимали изменения экспрессии

более чем в 2 раза (LogFoldChange≥±1,5) и уровне значимости p-value с поправкой FDR<0.01.

3.2.1. Анализ дифференциальной экспрессии между поражённой и здоровой кожей

Мы провели анализ дифференциальной экспрессии белок-кодирующих генов между поражённой и здоровой кожей. Всего было проанализировано 57393 генов, из которых 919 были достоверно дифференциально экспрессированы между поражённой псориазом и здоровой кожей. Из них в поражённой псориазом коже экспрессия 389 генов была понижена, а 530 была достоверно повышена (Приложение, таблица 3). Основываясь на ключевом вкладе иммунной системы в развитие патологии мы предпологали, что среди дифференциально экспрессирующихся генов будут присутстввовать гены, которые участвуют в иммунном ответе [Caruntu, 2014]. Выдвинутое предположение подтвердилось: среди ДЭГ присутствует большое количество генов, кодирующих интерлейкины, белки группы цитокинов, которые синтезируются, в основном, лейкоцитами и мононуклеарными факгоцитами [Wawrzycki, 2018]. Среди ДЭГ было выявлено 18 из 96 генов интерлейкинов, которые участвуют в воспалении (Таблица 2).

Таблица 2. Гены интерлейкинов, входящие в список дифференциально экспрессирующихся генов между поражённой псориазом и здоровой кожей.

Название гена	Кратность изменения экспрессии (Log2 Fold Change)	P-value	P-value с FDR поправкой
IL12B	2.64	1.6E-23	1.7E-22
IL12RB1	1.60	1.9E-36	3.9E-35
IL12RB2	1.86	1.2E-90	1.8E-88
IL17A	3.37	8.4E-37	1.8E-35
IL17C	2.58	4.2E-22	4.0E-21

IL17F	2.49	3.2E-19	2.5E-18
IL19	6.26	8.5E-78	8.4E-76
IL20	3.35	2.7E-51	1.0E-49
IL21R	1.87	2.5E-40	6.3E-39
IL22	1.81	9.9E-11	4.1E-10
IL26	2.51	4.4E-21	3.9E-20
IL34	-2.51	3.5E-85	4.3E-83
IL36A	7.85	1.1E-152	1.0E-149
IL36G	5.30	7.3E-211	5.8E-207
IL36RN	2.77	8.3E-85	1.0E-82
IL37	-2.72	1.3E-81	1.4E-79
IL4I1	2.45	1.7E-55	8.2E-54
IL6	1.76	1.1E-11	5.1E-11

Помимо интерлейкинов, BO время анализа дифференциально экспрессирующихся генов была выделена группа хемокинов семейства СХС и СС- цитокинов и их рецепторов (Таблица 3), которые участвуют в хемотаксисе иммунных клеток в очаг воспаления [Cochez, 2016]. Большое количество генов дифференциально цитокинов В списках экспрессирующихся генов подтверждают гипотезу о иммуноцентрическом механизме псориаза. Вероятно, именно эти гены играют основную роль в формировании псориатической бляшки и их можно считать генами, которые играют наибольшую роль в дальнейшем развитии заболевания. Помимо иммунного инфильтрата в очаге поражения И развития воспаления, патогенез заболевания также характеризуется гиперпролиферацией кератиноцитов и развитием, собственно, псориатической бляшки [Lee, 2007].

Таблица 3. Список хемокинов и их рецепторов, входящих в список дифференциально экспрессирующихся генов между поражённой псориазом и здоровой кожей.

Название гена	Кратность изменения экспрессии (Lof2 Fold Change)	P-value	P-value с FDR поправкой
CXCL1	3.274	5.9E-30	8.74E-29
CXCL10	3.691	1.6E-68	1.20E-66
CXCL13	4.729	6.4E-71	5.00E-69
CXCL17	2.663	3.1E-37	6.71E-36
CXCL2	2.691	6.7E-46	2.11E-44
CXCL6	2.217	5.7E-17	3.81E-16
CXCR2	2.700	1.1E-118	3.31E-116
CXCR4	1.915	6.0E-72	4.98E-70
CXCR6	2.679	7.7E-98	1.36E-95
CCL8	1.611	6.2E-20	5.12E-19
CCL4L2	2.290	1.3E-16	8.46E-16
CCL3	1.774	2.0E-10	8.20E-10
CCL22	1.996	2.4E-44	7.04E-43
CCL2	1.738	9.9E-42	2.63E-40
CCL18	2.877	5.8E-34	1.06E-32

При таком механизме развития патологии в списках дифференциально экспрессирующихся генов мы ожидали увидеть большое количество белоккодирующих генов, которые отвечают либо за клеточную пролиферацию и либо белки, которые за инактивацию инициацию деления, отвечают ингибиторов апоптоза [Irrera, 2017, Zeng 2016]. В списке ДЭГ было идентифицировано гены кератинов (Таблица 4). Образование псориатических бляшек связано с утолщением эпидермального слоя и активной пролиферацией кератиноцитов, и предыдущие исследования показали, что уровень экспрессии этих генов практически всегда отличается между поражённой и здоровой кожей, что говорит о состоятельности вклада пролиферации кератиноцитов в развитие заболевания [Zhang, 2015].

Таблица 4. Список генов кератина и их рецепторов, входящих в список дифференциально экспрессирующихся генов между поражённой псориазом и здоровой кожей.

Название гена	Кратность изменения	Log-	P-value	P-value c FDR
	экспрессии (Log2 Fold	нормированные		поправкой
	Change)	каунты на миллион		
KRT16	3.723	12.122	9.1E-53	3.8E-51
KRT24	2.279	1.754	5.3E-17	3.6E-16
KRT3	1.699	2.086	1.7E-14	9.6E-14
KRT31	-1.545	5.674	9.1E-21	7.9E-20
KRT4	-2.637	2.119	1.9E-32	3.1E-31
KRT6A	3.187	13.256	6.6E-55	3.1E-53
KRT6B	2.099	11.146	5.0E-30	7.5E-29
KRT6C	3.845	9.970	4.7E-34	8.5E-33
KRT77	-3.552	8.116	6.0E-123	2.1E-120
KRT79	-2.832	7.706	3.3E-34	6.0E-33
KRTAP9-8	-1.546	2.540	2.5E-08	8.5E-08

Для генов семейства SERPIN была показана роль в воспалении, иммунном ответе, онкогенезе и свёртывании крови [Lucas, 2018].

В предыдущей работе [Batycka-Baran, 2015] была показана роль белков комплекса S100A как медиаторов развития кожного воспаления и иммунного ответа в патогенезе псориаза. Белки этого семейства активно участвуют в транспорте ионов кальция или цинка через клеточный барьер. Кроме того, они регулируют иммунный ответ, а также пролиферацию и дифференцировку клеток [Batycka-Baran, 2015]. Помимо этого для белков S100, например, S100A7, была показана антимикробная роль, причём этот белок был впервые обнаружен именно в поражённой псориазом коже и назван псориазином [Vegfors, 2016]. При псориазе, в отличие от многих дерматозов, наблюдается сравнительно низкая обсемененность патогенной микрофлорой [Vegfors, 2016]. Вполне вероятно, что белки S100, совместно с другими антимикробными белками, накопление которых повышено в коже больных псориазом, являются причиной такой низкой обсемененности. В ходе мета-анализа мы обнаружили достоверную дифференциальную экспрессию для 5 генов комплекса S100A (Таблица 5).

Таблица 5. Список генов комплекса S100A, входящих в список дифференциально экспрессирующихся генов между поражённой псориазом и здоровой кожей.

Название гена	Кратность изменения экспрессии (Lof2 Fold Change)	Log- нормированные каунты на миллион	P-value	P-value с FDR поправкой
S100A12	6.948	4.728	3.8E-205	1.5E-201
S100A7	7.074	11.629	8.8E-152	7.3E-149
S100A7A	9.814	10.168	7.4E-158	8.3E-155
S100A8	7.253	12.188	1.3E-167	1.6E-164
S100A9	7.364	12.559	7.7E-136	4.6E-133

Сравнение генов со списками, полученными предыдущими исследователями, показало, что для 75% идентифицированных ДЭГ в предыдущих работах уже было показана дифференциальная экспрессия. При этом, сравнение списка ДЭГ, полученных в данном мета-анализе с Ahn et al., 2016 и Zolotarenko et al, 2016 (в которой была использована другая платформа анализа уровня транскрипции генов) был выявлен т.н. «коровый» список из 292 генов, которые идентифицированы в качестве дифференциально экспрессированных во всех трёх исследованиях (рисунок 7).

Рисунок 7. Пересечение списка ДЭГ полученных в этом исследовании, а также в исследованиях, которые были опубликованы ранее в работах 2016 года, Ahn et al. и Zolotarenko et al.

Интересно, что в этот список попало большое количество генов, которые участвуют как в иммунном ответе, так и в дифференцировке клеток кожи и ее ороговении. Например, в топ-20 генов, экспрессия которых повышена в поражённой псориазом коже, попали гены антибактериального комплекса S100A7A, S100A12, IL19, IL36G и IL36A (Таблица 6).

Имя гена	logFC	logCPM	PValue	FDR	
AKR1B10	6.094	6.431	7E-236	2E-231	
C10orf99	5.128	6.437	2E-164	7E-161	
DEFB4A	9.244	6.101	3E-149	7E-146	
GDA	5.179	5.111	1E-152	4E-149	
IL19	6.266	2.921	3E-77	9E-75	
IL36A	7.854	4.326	3E-151	7E-148	
IL36G	5.292	7.397	9E-208	1E-203	
KYNU	4.572	5.217	4E-265	2E-260	
NOS2	5.280	4.132	6E-98	3E-95	
PI3	6.691	10.659	9E-84	3E-81	
S100A12	6.943	4.538	1E-205	1E-201	
S100A7A	9.840	9.985	1E-158	4E-155	
SPRR2A	8.776	10.020	3E-210	5E-206	
SPRR2B	6.996	8.378	2E-150	4E-147	
TMPRSS11D	7.077	5.193	9E-199	9E-195	
TNIP3	5.957	3.225	6E-109	4E-106	
VNN3	5.660	2.832	9E-171	4E-167	

Таблица 6. Топ-20 ДЭГ, которые были обнаружены во всех трёх исследованиях.

Помимо списка генов, которые уже были ранее идентифицированы как ДЭГ, в ходе данной работы мы выявили гены, которые ранее не были ассоциированы с

псориазом (рисунок 7). Для ряда генов данного списка можно предположить роли, которые они играют в развитии изучаемого заболевания. Например, в список генов, для которых впервые показаны изменения экспрессии при псориазе, попал ген TMPRSS11A, который ассоциирован с клеточной пролиферацией; ген иммуноглобулина IGHG4; MFSD2B - ген, который участвует в экспорте фактора S1P на поверхности эритроцитов, который, в свою очередь, привлекает в очаг поражения иммунные клетки и может являться мишенью для разработки терапий; паралог гена IGKV3D-11, IGKV3-11, вариабельной который участвует В реализации структуры генов иммуноглобулинов, которые, в свою очередь, активно участвуют в иммунном ответе.

Подводя итог данного раздела, можно отметить, что в ходе работы мы выявили как устойчивый «коровый» список ДЭГ, которые участвуют в патогенезе псориаза и были обнаружены в предыдущих исследованиях, так и гены, дифференциальная экспрессия которых ранее не была ассоциирована с псориазом и которые участвуют в иммунном ответе. Проведенный мета-анализ дифференциальной экспрессии может, во-первых, сократить список недостоверных ДЭГ, которые стали таковыми из-за недостаточно большого объёма выборки, а, во-вторых, расширить понимание физиологических основ патологии и выявить ДЭГ, которые могут стать потенциальными мишенями для разработки новых методов терапии.

3.2.2. Функциональные группы генов, обогащённые дифференциально экспрессирующимися генами при псориазе

Для анализа процессов, которые изменены во время протекания псориаза, мы использовали программы для анализа обогащения – базу данных GOorilla [Eden, 2009]. Эта программа работает на основе оценки вхождения генов в генные онтологии (GO, Gene Ontologies), функциональные группы, ассоциированные с теми или иными процессами. Уровень значимости обогащения в таких программах оценивается с помощью p-value с поправкой

FDR, рассчитанного по формуле гипергеометрического распределения. Такой анализ позволяет выявить функциональные процессы и сигнальные каскады, которые значимо обогащены дифференциально экспрессирующимися генами и терминах генных онтологий. Так как псориаз описать ИХ В ЭТО многофакторное заболевание, которое включает в себя большое количество взаимодействующих генов и белков, анализ генных онтологий облегчает задачу интерпретации дифференциальной экспрессии отдельно взятых генов и позволяет перейти к описанию функциональных каскадов, которые изменены при протекании заболевания. Как и ожидалось, в ходе обогащения GO (рисунок 8, приложение, таблица 4) наиболее достоверно обогащёнными онтологиями стали функциональные пути, так или иначе ассоциированные с иммунитетом: общий защитный ответ, ответ на биотический стимул, ответы на внешние раздражители (как вирусные, так и бактериальные), системный иммунный ответ, позитивная регуляция иммунного ответа, а также хемотаксисные пути: хемотаксис для нейтрофилов, гранулоцитов, лейкоцитов, а также пути миграции иммунных клеток. Это может быть объяснено тем, что такие пути в целом характеризуются консервативным составом генов, которые участвуют в регуляции того или иного процесса (Таблица 7). Так как псориатические бляшки, помимо воспаления, характеризуются гиперпролиферацией 2009], мы ожидали, что в список достоверно Barker, кератиноцитов обогащённых ДЭГ путей попадут также функциональные каскады, которые участвуют пролиферации И дифференциации Такими В клеток. функциональными путями стали, например, путь регуляции дифференциации эпидермальных и эпителиальных клеток, дифференциации кератиноцитов, путь кератинизации и регуляция апоптоза (Таблица 8).

Рисунок 8. Список генных онтологий, наиболее обогащённых дифференциально экспрессирующимися генами. По оси х- -log10 p-value с FDR поправкой.

В целом, каскады, обогащённые дифференциально экспрессирующимися разделить на несколько категорий, по которым генами, можно ОНИ сгруппированы в базе данных GOorilla: пути регуляции ответа на различные стимулы, регуляцию клеточного сигналинга, регуляция транспорта, регуляция иммунного ответа, пути регуляции активации иммунных клеток, регуляцию продукции цитокинов, пути регуляции клеточного таксиса, а также функциональные пути, ассоциированные с кератинизацией и клеточной дифференциацией (рисунок 9), что демонстрирует визуализация с помощью пакета REVIGO (Supek et al., 2011). Одним из классов путей, которые обогащены дифференциально экспрессированными генами, являются пути липидного метаболизма. В ряде работ отдельную роль в антибактериальном иммунном ответе уделяют ламеллярным гранулам (гранулам Одланда) [Joshi, 2014]. Это клеточные секреторные липид-содержащие гранулы, которые

содержатся в кератиноцитах. Было показано, что они участвуют в большом количестве реакции на изменения окружающей среды.

Индекс GO	Описание	P-value	FDR	Количество	Количество
				генов в базе	дэг в пути
				данных	
GO:0001775	Активация иммунных клеток	1.43E-10	3.69E-08	965	77
GO:0045321	Активация лейкоцитов	7.48E-10	1.75E-07	852	69
GO:0045087	Врождённый иммунный ответ	2.28E-14	1.10E-11	465	55
GO:0006959	Гуморальный иммунный ответ	8.19E-10	1.89E-07	305	36
GO:0006955	Иммунный ответ	3.99E-26	7.71E-23	1105	118
GO:0072676	Миграция лимфоцитов	4.39E-10	1.08E-07	61	16
GO:1990266	Миграция нейтрофилов	7.25E-18	6.23E-15	89	27
GO:0006954	Провоспалительные процессы	2.60E-25	4.48E-22	418	68
GO:0097530	Регуляция миграции гранулоцитов	5.70E-18	5.51E-15	96	28
GO:0097529	Регуляция миграции миелоидных лимфоцитов	5.99E-18	5.45E-15	121	31
GO:0002682	Регуляция системного иммунного ответа	1.57E-17	1.28E-14	1496	123
GO:0070098	Сигнальный путь хемокинов	2.48E-14	1.13E-11	76	22
GO:0002376	Системный иммунный ответ	2.86E-32	8.84E-29	2206	194
GO:0071621	Хемотаксис гранулоцитов	2.36E-17	1.83E-14	85	26
GO:0048247	Хемотаксис лейкоцитов	8.59E-10	1.96E-07	47	14
GO:0030595	Хемотаксис лимфоцитов	3.34E-17	2.46E-14	137	32
GO:0030593	Хемотаксис нейтрофилов	4.29E-18	4.43E-15	80	26

Таблица 7. Иммунные функциональные каскады, обогащённые дифференциально экспрессирующимися генами.

Более того, недавно в исследовании было показано, что на модельных клеточных линиях и животных моделях с гиперлипедермией индукция липидами приводила к появлению фенотипа, сходного с псориатическим [Shih, 2018], что объясняет обогащение процессов, связанных с корнификацией, дифференциацией кератиноцитов, эпителиальных и эпидермальных клеток (таблица 8).

Таблица 8. Функциональные группы генов, ассоциированные с кератиноцитами, которые обогащены дифференциально экспрессирующимися генами.

Индекс GO	Описание	P-value	FDR	Количество	Количество
				генов в	ДЭГ в пути
				базе	
				данных	
GO:0070268	Корнификация	4.34E-15	2.58E-12	112	27
GO:0030216	Дифференциация	1.34E-14	6.89E-12	74	22
	кератиноцитов				
GO:0009913	Дифференциация	1.22E-13	4.62E-11	90	23
	эпидермальных клеток				
GO:0030855	Дифференциация	2.32E-11	6.64E-09	310	39
	эпителиальных клеток				
GO:0008544	Развитие эпидермиса	3.03E-08	4.60E-06	80	16
GO:0010647	Позитивная регуляция	3.23E-08	4.76E-06	1726	108
	клеточной адгезии				
GO:0007154	Межклеточная	1.50E-07	1.97E-05	837	62
	коммуникация				
GO:0031424	Кератинизация кожи	2.02E-07	2.53E-05	179	23

«Ключевые» гены псориаза, которые мы выявили, результатов нескольких исследований, показали обогащение GO как ответа на внешние стимулы и иммунного ответа, так и обогащение процессов, которые участвуют в кератинизации и активации клеточной дифференцировки клеток кожи (Таблица 9).

Таблица 9. GO-обогащение процессов "ключевыми" генами псориаза.

GO Term	Description	P-value	FDR q-value	Enrichment
GO:0043207	ответ на внешний биотический стимул	4.26E-21	6.45E-17	4.71
GO:0009607	ответ на биотический стимул	1.63E-20	1.24E-16	4.57
GO:0006952	ответ обороны	6.22E-20	3.14E-16	4.11
GO:0051707	ответ на другой организм	1.06E-17	4.01E-14	5.02
GO:0002376	процесс иммунной системы	2.70E-17	8.18E-14	2.8
GO:0009605	ответ на внешний стимул	1.11E-15	2.80E-12	3.09
GO:0006955	иммунная реакция	3.42E-15	7.42E-12	3.89
GO:0098542	защитная реакция на другой организм	2.93E-14	5.56E-11	5.52

GO:0051607	ответная реакция на вирус	4.60E-14	7.75E-11	8.61
GO:0070268	ороговение	5.07E-14	7.69E-11	10.86
GO:0019221	цитокин-опосредованный сигнальный путь	3.37E-13	4.64E-10	4.3
GO:0009615	ответ на вирус	2.10E-12	2.66E-09	6.32
GO:0002252	иммунный эффекторный процесс	5.38E-12	6.27E-09	3.4
GO:0006954	воспалительная реакция	1.34E-10	1.45E-07	4.54
GO:0045087	врожденный иммунный ответ	2.09E-10	2.11E-07	4.63
GO:0009913	дифференцировка эпидермальных клеток	8.41E-10	7.97E-07	9.63
GO:0030216	дифференцировка кератиноцитов	9.03E-10	8.05E-07	10.86
GO:0018149	пептидная сшивка	1.09E-09	9.1 6 E-07	12.36
GO:0071222	клеточный ответ на липополисахарид	1.62E-09	1.29E-06	7.46

defense response		response to biotic stimulus			response to other organism		regulation of transport	fsec	retion	chemical homeostasi	hormone metabolic process	lipid metabo process	ic small me	molecule tabolic xcess	cellular lipid metabolic process			
				i rest			regulation of multi-organism process	regulatio	on of ition	regulation of cell-cell adhesion	regulation of symbiosis, ancompassing mutuation through parasitian	of cell or subcellular component	organic a metabol process	cid terpen c metab proce abolism-	olid carboxyla acid biosyntheti process	immune proc	system cess	
response to external stimulus inflammatory respo defense r		response response		58	regulation of response to stimulus		killing of cells of other organism	regulat of molec function regulation	ation of cular on ion n iolic	f transport regulation of leukocyte prosferation positive egulation of	ion transport	smail molecule catabolic	promes primary alco metabolis process linoleic ac metaboli	ho amail m biosyr id armo	thetic ess			
		defens	e respon	10 stre	reg	regulation of receptor activity		regulation of biological quality	calcium concentr regulat of horm level	ion b ation lion d one e	process process monitology provide monitology per	ptide muticatular organisma homeostasis	process	process	u actif metabole	1LOCERE		
cytokine-mediated	posi regul of rest to stin	positive response to cell egulation cytokine stimulus		cell-cell si	cell signaling response to chemical		comifica	ition	cell	activation	programmed cell death	response to	stimulus	multi-or proc	ganism ^b :ess	eptide cros peptide cros cytoki metabolic	ine	
aignaing patriway	cell su rece	aface ptor	face		neutrop activati	rophil stion STAT cascade		9 7 E		cel	ll death ation	epidermis development	multicellula organisma	enca enca st l orga	cternal psulating ructure mization	cell kill	ing being	htal process
immune response	signaling	regulation of signal transduct		tion nt	regulation acute of T-helper inflammatory 17 type response immune		cytokine pro	aduction	muso	le contraction	cellular developmenta	process	loc	omotion	developments process	drug drug metabolism process	wax wax breeyrtheets process	
	respor organic s	nse to ubstance	leuk degrar	ocyte sulation	negativ regulation of hydrole activity	on nb ase	gulation of ionuclease activity	regulation of tolerance induction	regulatio multicei organismal	in of Iular process	mu	scle system process	digestive system process	signaling	cell co	mmunicatio	cellular modified amino acid metabolisn	wax wax metabolism process

GO enrichment of different pathway classes

Рисунок 9. Распределение дифференциально экспрессированных генов по различным функциональным группам, полученное с помощью пакета REVIGO. Выявляются как пути, отвечающие за иммунный ответ, так и пути, отвечающие за кератинизацию. Размер области, которую занимает функциональный путь, зависит от –log(p-value). Розововый цвет отражает пути, ассоциированные с иммунным ответом, голубые- с корнификацией кожи, коричневый блок ассоциирован с процессами, участвующими в регуляции межклеточных взаимодействий, а розовый- с метаболизмом жирных кислот.

3.3. Оценка уровня метилирования ДНК в псориазе

Для полногеномного анализа метилирования ДНК в поражённой псориазом и здоровой псориазом коже, мы, аналогично анализу экспрессии генов, провели агрегацию данных из статей, размещённых в базе данных GeoDataSets в NCBI и наших собственных результатов анализа дифференциального метилирования ДНК с помощью чипов анализа метилирования Illumina Methylation BeadChip 450k. В ходе такого анализа мы собрали базу данных по метилированию ДНК для 189 образцов поражённой псориазом кожи и 83 образцов здоровой кожи.

3.3.1. Анализ метилирования ДНК с помощью чипов Illumina Methylation BeadChip 450k

Чипы анализа метилирования Illumina Methylation BeadChip 450k позволяют 485 577 получить информацию лля локусов метилирования ЛНК. расположенных по геному относительно равномерно. Обработку результатов, полученных с помощью Illumina Infinium HumanMethylation 450K BeadChip, проводили с помощью пакетов программной среды R IMA версии 3.1.2 (R/Bioconductor), limma, methylumi согласно инструкции авторов (Wang et al., 2012). Для сравнения метилирования ДНК между двумя группами мы использовали традиционный подход: локус метилирования ДНК считали дифференциально метилированным, если между группами сравнения среднее бета-значение было больше, чем 0.1, а p-value t-теста с поправкой Бонферрони была меньше 0.01. В ходе данного анализа мы выявили 899 дифференциально метилированных локусов ДНК между поражённой псориазом и здоровой кожей, из них уровень метилирования ДНК 485 локусов был значимо понижен в поражённой коже, а остальные 414 локуса имели повышенный уровень метилирования ДНК в поражённой коже больных псориазом (Приложение, таблица 5). Среди локусов, ДНК в которых достоверно дифференциально метилирована в поражённой коже по сравнению со здоровой, 679 локусов, содержащихся на чипе, были аннотированы с тем или иным геном, что ~75% составляет OT всего множества локусов, которые были

идентифицированы как дифференциально метилированные (Приложение, таблица 5).

Анализируя список дифференциально метилированных локусов, можно отметить гены белков S100A. Как уже было сказано, белки S100 играют важную роль в регуляции иммунного ответа, в том числе антибактериального ответа в псориатической бляшке [Batycka-Baran, 2015]. Позже была показана роль метилирования ДНК в регуляции активности белков этого комплекса [Chen, 2017] на различных заболеваниях. В ходе данного анализа мы выявили достоверное дифференциальное метилирование ДНК 9 локусах на чипе метилирования, ассоциированных с тремя белками комплекса S100A (Таблица 10). Уровень метилирования ДНК в локусах, ассоциированных с белками S100A, был понижен в поражённой псориазом коже. Так как все 3 гена, для был дифференциального которых обнаружен достоверный уровень метилирования ДНК, входили в список дифференциально экспрессированных генов. выявленный на предыдущем этапе работы, можно выдвинуть предположение, что при псориазе метилирование ДНК в значительной степени регулирует уровень активности этих генов (Таблица 10).

Название пробы	Имя гена	Локус пробы	Среднее бета- значение в поражённой коже	Среднее бета- значение в здоровой коже	∆ Бета- значений поражённой и здоровой кожи	p-value _{bonf}
cg01431057	S100A8	Body	0.523	0.624	-0.100	4.22E-11
cg03165378	S100A9	S100A9 TSS1500		0.804	-0.109	1.38E-14
cg03514239	S100A9	TSS1500	0.414	0.515	-0.101	1.26E-13
cg06355720	S100A9	3'UTR	0.698	0.819	-0.120	4.17E-15
cg12067024	S100A7A	TSS1500	0.583	0.699	-0.116	1.73E-10
cg16139316	S100A9	5'UTR	0.628	0.785	-0.157	1.78E-15
cg17496887	S100A7A	TSS1500	0.567	0.691	-0.124	7.95E-11
cg20169988	S100A9	Body	0.685	0.818	-0.133	8.75E-15
cg20335425	S100A8	5'UTR	0.429	0.556	-0.127	7.93E-16

Таблица 10. Дифференциально метилированные локусы ДНК между поражённой и здоровой кожей, которые ассоциированы с белками группы S100A.

Помимо группы белков S100A мы также выделили списки генов и локусов с максимально дифференциально метилированной ДНК между поражённой и здоровой кожей. Гены, уровень метилирования которых значительно понижен, могут иметь альтернативную активность в коже поражённой псориазом (Таблица 11). Например, для гена CUX1 была показана роль в регуляции клеточного цикла, морфогенеза и клеточной дифференциации [Ripka, 2010], и мы обнаружили, что этот ген гипометилирован в поражённой псориазом коже. Другой пример - ген STK10, белковый продукт которого является серин/треониновой киназой, участвующей в регуляции клеточного цикла [Walter, 2003].

Название пробы	Имя гена	Среднее бета- значение в поражённой коже	Среднее бета- значение в здоровой коже	∆ Бета- значений	p-value _{bonf}
cg01973676	CUX1	0.349	0.626	-0.276	9.87E-20
cg02716776	S1PR4	0.387	0.602	-0.215	3.52E-18
cg21920221	STK10	0.451	0.661	-0.210	9.79E-19
cg03003434	SYTL3	0.471	0.666	-0.194	1.48E-16
cg00288598	EIF2C2	0.460	0.648	-0.187	1.54E-15
cg24107728	LRP8	0.483	0.670	-0.186	3.68E-18
cg19430423	CYP2S1	0.324	0.511	-0.186	9.50E-21
cg22100563	TPD52L2	0.580	0.762	-0.182	7.66E-19
cg07651316	BTBD12	0.708	0.887	-0.179	7.66E-19

Таблица 11. Список локусов, ДНК в которых наиболее гипометилирована в поражённой псориазом коже.

Следует отметить, что большая часть локусов, в которых наблюдалось гиперметилирование ДНК в поражённой коже, приходилась на тело гена. Аналогично группе гипометилированных локусов, в этот список попали локусы, гены которых ассоциированы с клеточным морфогенезом (*DAAM1*, *ATG7*), что говорит о возможной роли метилирования ДНК в регуляции гиперпролиферации кератиноцитов в очаге поражения и формировании псориатической бляшки [Zhou, 2016] (Таблица 12).

Таблица 12. Список локусов, ДНК в которых наиболее гиперметилирована в поражённой псориазом коже.

Название пробы	Имя гена	Локус пробы	Среднее бета- значение в поражённой коже	Среднее бета- значение в здоровой коже	∆ Бета- значений	p-value _{bonf}
cg18421360	GPR98	Body	0.604	0.756	0.152	2.13E-11
cg04272613	DAAM1	5'UTR	0.308	0.462	0.153	1.30E-17
cg22330763	SLC29A1	5'UTR	0.568	0.722	0.154	2.85E-17
cg18263455	MIR548H4	Body	0.532	0.688	0.155	2.57E-15
cg03143486	HEATR2	Body	0.503	0.661	0.157	1.72E-16
cg12515659	FAM134B	Body	0.478	0.636	0.158	0.003418
cg17445490	ECE1	Body	0.532	0.693	0.160	7.20E-15
cg07355514	COG7	Body	0.420	0.582	0.162	7.39E-17
cg14541011	RALGDS	Body	0.396	0.558	0.162	3.12E-18
cg24705426	ATG7	Body	0.435	0.613	0.177	1.74E-16

К сожалению, более точный анализ уровня метилирования ДНК в локусах генов, кодирующих белки группы S100A и около генов с дифференциально метилированной ДНК с помощью чипов Illumina Methylation BeadChip450k, не представляется возможным по причине низкой концентрации проб анализа метилирования ДНК на чипе, с которых мы получаем информацию, на геном.

Рисунок 10. Диаграмма Венна для выявления пересечения списка ДМЛ (DMP), которые мы обнаружили в данной работе с ДМЛ, которые выявил Chandra с коллегами [Chandra et al., 2018].

Если сравнивать полученные в данной работе результаты с недавно вышедшим исследованием, в ходе которого проанализировали 24 пациентов из западноиндийской популяции и выявили 4133 дифференциально метилированных локуса, пересечение дифференциально метилированных локусов составляет более 50%, 483 из 499 локусов (рисунок 10). Более длинный список ДЛМ, полученных в ходе работы Chandra et al, может быть объяснён большей выборкой (рисунок 10, рисунок 11). Было показано, что даже внутри группы, объединённой по фенотипическому признаку, уровень метилирования ДНК в значительной степени, варьировать что объясняет обратную может ДМЛ длиной списка количеством образцов в зависимость между И В целом, ассоциированы исследовании. список генов, С которыми дифференциально метилированные локусы, перекрывается в большей степени, чем список отдельных проб.

Рисунок 11. Пересечение списка генов (DMG), которые ассоциированы с дифференциально метилированными локусами в нашей работе и в работе Chandra, 2018.

В ходе данного исследования были выявлены гены, для которых был впервые показан паттерн дифференциального метилирования при развитии псориаза. Например, дифференциальное метилирование при псориазе впервые было показано для промоторной области гена НОХА2, который активно участвует в регуляции клеточной дифференцировки И морфогенезе В качестве транскрипционного фактора [Dobreva, 2006]. Также в списки ДМЛ попала проба, ассоциированная с ITGB5, продукт которого является субъединицей интегрина, который, в свою очередь, играет важную роль в регуляции межклеточных взаимодействий, в том числе между кератиноцитами [Duperret, 2015].

3.3.2. Функциональные группы генов, обогащённые дифференциально метилированными локусами между поражённой псориазом и здоровой кожи

Следующим этапом стала интерпретация результатов анализа дифференциального метилирования ДНК, для чего мы использовали утилиты для анализа обогащения Go Gorilla и REVIGO. Так как метилирование ДНК

играет значительную роль в регуляции самых разных клеточных процессов, в поражённой псориазом коже мы ожидали увидеть более слабые сигналы обогащения процессов дифференциально метилированными локусами ДНК. Тем не менее, с помощью проведенного анализа мы смогли глобально интерпретировать обогащённые дифференциально метилированными локусами процессы. Прежде всего, наибольшей группой процессов, обогащённых дифференциально метилированной локусами ДНК, стали С различные процессы, начиная с реакции на внешние раздражители, регуляции иммунитета, функциональные пути воспаления, регуляция локализации иммунных клеток и регуляторы продукции рецепторов на клеточной поверхности, а также регуляция миграции лейкоцитов во время иммунного ответа (Таблица 13).

Таблица 13. Функциональные каскады, ассоциированные с иммунным ответом, которые обогащены дифференциально генами с дифференциально метилированными локусами.

Индекс GO	Описание	P- value	FDR	Количество генов в	Количество ДЭГ в пути
				базе	
				данных	
GO:0006954	Ответ на воспаление	2.32E-	1.12E-	411	27
		05	03		
GO:0006935	Хемотаксис	7.60E-	2.55E-	300	21
		05	03		
GO:0070486	Агрегация лейкоцитов	9.87E-	3.05E-	10	4
		05	03		
GO:0002682	682 Регуляция общего иммунного		3.00E-	1376	61
	ответа	05	03		
GO:0002523	Миграция лейкоцитов в очаг	1.52E-	4.19E-	11	4
	воспаления	04	03		
GO:0048870	Клеточная мобильность	1.95E-	4.64E-	892	43
		04	03		
GO:0060326	Лейкоцитарный хемотаксис	1.96E-	4.58E-	188	15
		04	03		

Помимо путей, ассоциированных с иммунным ответом и миграцией иммунных клеток в очаг воспаления, также были идентифицированы функциональные каскады, которые регулируют клеточную гибель, клеточную дифференциацию, межклеточные взаимодействия и передачу межклеточного сигнала. Эти пути характерны для гиперпролиферирующих кератиноцитов, что лишний раз

говорит о необходимости поиска баланса между кератиноцентрической и иммунноцентрической моделями развития псориаза (Таблица 14, рисунок 12).

Индекс GO	Описание	P- value	FDR	Количество генов в базе данных	Количество ДЭГ в пути
GO:0010941	Регуляция клеточной гибели	2.46E- 08	7.60E- 05	1623	82
GO:0042981	Регуляция инициации апоптоза	6.09E- 08	1.57E- 04	1491	76
GO:0043067	Регуляция апоптоза	9.17E- 08	2.02E- 04	1506	76
GO:0030334	Регуляция клеточной миграции	1.02E- 07	1.98E- 04	852	51
GO:0035556	Внутриклеточные взаимодействия	1.70E- 07	2.63E- 04	1557	77
GO:0010646	Межклеточные взаимодействия	6.75E- 07	6.95E- 04	3396	136
GO:0045595	Регуляция клеточной дифференциации	2.43E- 06	1.88E- 03	1725	79
GO:0050793	Регуляция процессов развития	1.32E- 05	7.28E- 03	2505	102

Таблица 14. Функциональные каскады, ассоциированные с клеточной пролиферацией, которые обогащены генами с дифференциально метилированными локусами

Полученные результаты, в целом, перекрываются с результатами, опубликованными в предыдущих работах. Меньший объём дифференциально метилированных локусов и генов может быть объяснён увеличением выборки, что ведёт за собой отбраковку некоторого количества ложноположительных результатов. А полученный список из 483 локуса и 381 гена можно, в целом, считать консервативным для картины дифференциального метилирования ДНК в псориазе.

	regulation of cell migration	regulation of response to stimulus	response to oxygen-containing	inflammatory response	regulat	regulation of multicellular organismal process		egulation process to	response to ixic substance	protein phosphorylation phosphate-containing protein phosphorylation metabolic process		movement of cell or subcellular component movement of cell or subcellular component
positive regulation of cellular process			Compound		organisma							
		regulation of cell differentiation	response to drug	regulation of fai	enzyme i receptor p	enzyme linked receptor protein signaling pathway		of cell	regulation of	phosphorus metabolic process		
	intracellular signal transduction			- cen unicientatio	" signaling p				orogical quality			cell death.
			negative regulation of biological process	cellular response	semaphorin-plexin signaling pathway involved in neuron		cellula esponse to	llular se to drug		cell adhesion		vesicle-mediated
	regulation of signaling	transduction		ar process	projection guid	nega	native			cell adhesion		resicle-mediated transport
		regulation of cellular	regulation of immune system process	defense response	regulation of catalytic activity kinase		tion of lein reonine activity	response to chemical	actin cytoskeleton organization	neutrophil aggregation		import into cell
cell surface receptor signaling pathway		component organization										
	regulation of cellular process	regulation of	leukocyte migration	regulation of	cellular component organization		act septum Igenesis	formation o quadruple SL/U4/U5/U	f response 6 to stress	biological regulation		biological adhesion
regulation of apoptotic process	regulation of cell	developmental process	inflammatory response	iocanzalion		cell-cell in	I signaling in mammary				_	
				response to antibiotic	cellular response to endogenous stimulus deve		velopment	vesicle	response to	imm	immu	cellular component
	communication	cellular response to organic substance	cytoskeleton organization				rocyte ppment	along	endogenous stimulus	locomotion system proce		em organization ess or biogenesis

REVIGO Gene Ontology treemap

Рисунок 12. Распределение дифференциально экспрессированных генов по различным функциональным группам. Размер области, которую занимает функциональный путь зависит от –log(p-value). Розовый блок ассоциирован с различными клеточными процессами, начиная с регуляции иммунного ответа и заканчивая регуляцией апоптоза.

3.4. Поиск основных регуляторов транскрипции, связанных с развитием псориаза

Следующей задачей исследования стал поиск факторов транскрипции, которые участвуют в регуляции дифференциально экспрессирующихся генов. Современные базы данных, помимо результатов экспериментов по иммунопреципитации хроматина, используют предсказанные также взаимодействия белков ДНК, с которые могут содержать 2011]. [Fazius, Поэтому ложноположительные результаты перед непосредственно поиском списка регуляторов транскрипции, ΜЫ проанализировали существующие базы данных экспериментов иммунопреципитации хроматина. Для того чтобы получить базу данных сайтов связывания регуляторов транскрипции на регуляторные области генов. В отличие от анализа генных онтологий, анализ обогащения транскрипционными регуляторами направлен, в первую очередь, на более тщательный анализ механизмов регуляции экспрессии генов. Показано, что факторы, дифференциально транскрипционные являясь не экспрессирующимися генами, способны значительно менять экспрессию своих генов-мишеней [Babu, 2004].

3.4.1. Агрегация направленного графа из существующих данных экспериментов иммунопреципитации хроматина.

Мы анализировали списки транскрипционных регуляторов при помощи собственного алгоритма путем поиска локального графа транскрипционных регуляторов максимального веса, происходящего из узла - дифференциально экспрессирующегося гена. Перед таким анализом необходимо было получить базу данных, содержащую список транскрипционных регуляторов и их мишеней. Для агрегации базы данных сайтов посадки транскрипционных регуляторов мы выбрали базу данных ChipBase 2.0 [Zhou, 2017]. Эта база данных на данный момент содержит 5 803 обработанных эксперимента по

иммунопреципитации хроматина человека, в том числе 2 498 эксперимента по поиску сайтов посадки транскрипционных факторов человека. В данной работе для изучения мы выбрали класс транскрипционных факторов как наиболее представленный в базах данных класс транскрипционных регуляторов. Всего в базе данных ChipBase 2.0 содержится информация о 475 различных транскрипционных факторах человека. Для того чтобы получить список генов-мишеней, мы получили результаты экспериментов с точками сайтов связывания транскрипционных факторов в регуляторных областях их мишеней. Диапазон регуляторной области брали стандартную, [-1kb;+1kb] от точки старта транскрипции. На выходе для каждого эксперимента мы получили таблицу для ChipBase 2.0, содержащую информацию о сайтах посадки того или иного транскрипционного фактора в окрестностях TSS гена для каждого из экспериментов (Таблица 15).

Имя	Дистанция до	Начало точки	Конец точки	Длина
гена	TSS	связывания	связывания	локуса
				посадки ТР
STAT1	537	191018612	191022235	3623
RAD52	-286	989455	991223	1768
CD99	809	2690715	2693259	2544
MAD1L1	32	2232814	2233608	794
LASP1	734	38868682	38872503	3821
M6PR	466	8947883	8951096	3213
NIPAL3	-118	24415358	24415992	634
LAS1L	271	65533903	65535105	1202
ANKIB1	-58	92245399	92246951	1552
KRIT1	-9	92245399	92246951	1552
RAD52	-286	989455	991223	1768

Таблица 15. Список локусов связывания транскрипционного фактора *STAT1* в образце HUMHG00980 с регуляторными областями около TSS различных генов.

Таким образом, мы перебрали все существующие в базе данных комбинации транскрипционный фактор-мишень, включая ситуации, когда сайт связывания транскрипционного фактора был найден в области TSS самого ТФ, т.е. ситуации саморегуляции. После того, как мы получили списки всех возможных комбинаций, мы смогли собрать их в одну базу данных и агрегировать их в направленный граф, с 1 958 628 рёбрами типа
транскрипционный фактор->мишень, содержащий данные о 475 транскрипционных факторах и 19766 генах-мишенях и содержащий информацию о сайтах посадки ТФ в локусе около точки старта транскрипции гена.

3.4.2. Идентификация подграфов отдельных транскрипционных регуляторов

В ходе данного этапа работы мы искали регуляторы транскрипции конкретных генов с помощью разработанного нами алгоритма поиска графа с максимальной взаимной информацией между усреднённым значением генной экспрессии между всеми элементами графа и вектором фенотипов. Дело в том, что очень часто транскрипционные регуляторы не являются дифференциально экспрессирующимися генами. Для того чтобы предсказать активные ТФ, используют различные подходы. Наиболее консервативным подходом является транскрипционных регуляторов, которые поиск обогащены дифференциально экспрессирующимися генами по сравнению с базой данных, которая содержит информацию об этих ТФ и их мишенях. Тем не менее, такой анализ не даёт сведений о регуляторной активности транскрипционных регуляторов. Для того чтобы выявить генные сети, которые содержат транскрипционный регулятор и ген-мишень, было решено применить модификацию алгоритма поиска маркеров, который впервые был 2007 году [<u>Chuang</u>, 2007]. Если рассматривать предложен В пару «транскрипционный фактор-мишень», то при дифференциальной активности транскрипционного фактора в поражённой и здоровой коже взаимная информация усреднённого значения экспрессии между мишенью и ТФ и вектора фенотипов такой пары должна быть выше, чем взаимная информация вектора экспрессии гена-мишени и вектора фенотипов. А с помощью дополнительной энтропии, которая происходит из вектора экспрессии транскрипционного фактора, мы сможем «уточнить» разницу между поражённой здоровой кожей. Более если регуляции И того, В

транскрипционного фактора участвует ещё один регулятор экспрессии, то такая структура, должна ещё лучше объяснять разницу между поражённой и здоровой кожей. Для того чтобы выявить такие сети-регуляторы, было предложено применить подход, основанный на поиске локального орграфа вокруг гена интереса с максимальной взаимной информацией между усреднённым вектором экспрессии этого орграфа и вектором фенотипов. На вход мы подавали список из 930 дифференциально экспрессирующихся генов, которые использовали в качестве зёрен агрегации подграфов. На работы первом этапе ΜЫ проверяли вхождение всего списка дифференциально экспрессирующихся генов BO множество генов, содержащихся в списке вершин орграфа, полученного нами после агрегации базы данных ChipBase 2.0, таких генов было выявлено 741. После этого мы итерационно жадно собирали граф с максимальной взаимной информацией, согласно алгоритму, приведённому в главе «материалы и методы». На выходе мы получили таблицу, которая содержит информацию о зерне агрегации подграфа, вершинах подграфа, количестве вершин в графе, а также взаимной информации ДЭГ, подграфа и пермутационных тестов. Мы исключали подграфы, для которых FDR хотя бы одного теста был больше 0.01. Всего таким способом мы выявили 503 подграфа с достоверным значением p-value с поправкой FDR (таблица 16, приложение, таблица 6).

Таблица 16. Пример выхода из алгоритма. ДЭГ на вход - ген, с которого начинается построение подграфа, колонка «узлы подграфа»- гены, которые входят в маркерный подграф, МІ ДЭГ- взаимная информация между геном-зерном и вектором фенотипов, МІ графа- взаимная информация между подграфом и вектором фенотипов, а колонки с FDR-результаты пермутационных тестов.

ДЭГ на	Узлы подграфа	Гены	MI	MI	FDR	FDR
вход		В	ДЭГ	графа	теста	теста
		графе			#1	#2
BTC	BTC, GLI2, TCF7L1, NRF1	4	0.286	0.319	6.7E-03	6.7E-03
MYEOV	MYEOV, GATA6, NR1D1, NEUROD2, KLF15	5	0.209	0.319	6.7E-03	6.7E-03
SPINK1	SPINKI, GATA6, NR1D1, KLF15, FOXJ2	5	0.267	0.319	6.7E-03	6.7E-03
KANK4	KANK4, GATA6, NEUROD2,	6	0.207	0.320	6.7E-03	6.7E-03

	NR1D1, ZBTB4, PATZ1					
RP11-	RP11-98L5.5, GATA6, ZBTB4,	6	0.294	0.324	6.7E-03	6.7E-03
98L5.5	FOXJ2, GATA3, NRF1					
TNNC1	TNNC1, PATZ1, ZBTB4,	6	0.242	0.326	6.7E-03	6.7E-03
	NFATC1, KLF13, UBTF					
SYT9	SYT9, GATA6, KLF15, ZBTB4,	8	0.205	0.326	6.7E-03	6.7E-03
	GATA3, FOXJ2, FOXO4,					
	MEF2D					
CYP4B1	CYP4B1, GATA6, ZBTB4,	7	0.204	0.329	6.7E-03	6.7E-03
	FOXJ2, PPARA, NRF1, ARNT					
PDZD7	PDZD7, GATA6, ZBTB4,	6	0.253	0.330	6.7E-03	6.7E-03
	FOXO4, FOXJ2, UBTF					
SNTB1	SNTB1, AR, ZBTB4, UBTF	4	0.307	0.338	6.7E-03	6.7E-03
MYH14	MYH14, GATA6, ZBTB4,	5	0.281	0.348	6.7E-03	6.7E-03
	GATA3, KLF15					

После агрегации подграфов, мы оценили количество ТФ, которые попали в разные графы (таблица 17). Наибольшую частоту встречаемости имел ТФ NFKB1, который в предыдущих работах неоднократно ассоциировался с регуляцией развития псориаза [Butt, 2005; Smyth, 2006]. Помимо него большую частоту (встречаемость более чем в 20% графов) имели транскрипционные факторы *KLF15*, EHF, *STAT1*. Для транскрипционных регуляторов STAT1 и STAT2 уже неоднократно показывали ассоциацию с псориазом в предыдущих работах, это транскрипционные факторы, которые участвуют В положительной регуляции генов под возлействием интерферонов 1-3 типа [Hald, 2013]. Для ЕНF, который является эпителийспецифичным транскрипционным фактором и участвует в регуляции клеточной дифференциации подтвердили онкогенезе, ΜЫ И ранее выдвинутую гипотезу о его роли в патогенезе заболевания [Swindell, 2015].

дифференциально экспрессирующихся генов в поражённой и здоровой коже.										
TFs	Количество графов, содержащих ТФ	Частота присутствия в графе	Описание	Роль						
NFKB1	195	0.388	Субъединица фактора транскрипции NFKB1	Участвует в регуляции иммунного ответа						
EHF	134	0.266	Эпителий-	Вовлечён в						

Таблица	17.	Топ-4	транскрипционных	факторов,	которые	участвуют	В	регуляции
дифферен	циал	ьно экс	прессирующихся ген	ов в поражё	енной и зд	оровой коже		

специфический

транскрипционный

дифференцировку

И

эпителия

			фактор Ets 3	канцерогенез
KLF15	110	0.219	Kruppel Like Factor 15	Является отрицательным регулятором ацетилирования ТР53. Ингибирует активацию NfkB посредством репрессии ацетилирования RELA, опосредованного от EP300.
STAT1	107	0.213	Преобразователь сигналов и активатор транскрипции 1	Сигнальный преобразователь и активатор транскрипции, который опосредует клеточные ответы на интерфероны (IFN), цитокины KITLG/ SCF и другие цитокины и другие факторы роста.

Транскрипционные регуляторы, которые были найдены в большом количестве графов, можно, видимо, считать основными регуляторами заболевания, так как именно они присутствуют в большом количестве орграфов, которые хорошо объясняют разницу между поражённой псориазом и здоровой кожей.

3.5. Поиск локусов ДНК с достоверной корреляцией между уровнем экспрессии и уровнем метилирования ДНК

Неоднократно было показано, что метилирование ДНК - важный элемент регуляции экспрессии генов. Давно известно, что метилирование ДНК играет большую роль патогенезе псориаза. К сожалению, эксперименты, которые одновременно включают в себя анализ экспрессии генов и метилирования ДНК в одном и том же образце дороги и трудоёмки. Именно по этой причине актуально выявить корреляцию между экспрессией генов и метилированием ДНК.

3.5.1 Пересечение множеств генов с дифференциальной экспрессией и локусов с достоверным дифференциальным метилированием ДНК, расположенных в регуляторных последовательностях этих генов.

На первом этапе данного исследования мы изучали пересечение множества локусов с достоверным дифференциальным метилированием ДНК между здоровой кожей дифференциально поражённой И с множеством экспрессированных генов. Несмотря на то, что такой анализ даёт только приблизительное представление о роли метилирования ДНК в регуляции экспрессии генов, гены, которые входят в «топ» обоих списков, возможно предположение о значимой роли метилирования ДНК в генной экспрессии. В ходе анализа дифференциальной экспрессии мы выявили список из 919 дифференциально экспрессирующихся генов между поражённой и здоровой кожей. Среди проб на чипе метилирования Illumina Methylation BeadChip 450k, которые были достоверно дифференциально метилированы, 679 проб были ассоциированы с каким-либо геном и содержали 510 уникальных названий генов. Тем не менее, анализ кругов Эйлера этих списков показал относительно низкое (2.5%) пересечение, всего в этот список вошло 36 генов (рисунок 13).

Рисунок 13. Пересечение множеств дифференциально экспрессирующихся генов (ДМГ) и дифференциально метилированных локусов (ДМЛ).

Среди списка генов, который является пересечением множеств ДЭГ и ДМЛ можно выделить 3 гена группы S100A: S100A7A, S100A8 и S100A9. Для этих генов в предыдущих работах уже была показана роль метилирования ДНК в регуляции их экспрессии. Тот факт, что для других белков, которые входили в список дифференциально экспрессирующихся генов, не была выявлена корреляция между экспрессией генов и метилированием ДНК, может быть объяснён относительно низкой концентрацией локусов анализа метилированы ДНК, расположенных на чипе. Например, локусов, которые ассоциированы с белком S100A12, на чипе нет. В список попали гены, для которых связь между экспрессией и метилированием ДНК в псориазе установлена в нашей работе впервые. Например, для продукта гена AIM2, который участвует в регуляции иммунного ответа, дифференциальное метилирование ДНК в псориазе было показано впервые. Аналогично, для гена САМР ассоциация между экспрессией и метилированием была показана впервые. Для генов САМР и АІМ2 была показана роль в регуляции специфического иммунного ответа на бактериальную инфекцию. Всего было найдено 48 локусов, которые одновременно диффенциально метилированы и дифференциально экспрессированы между поражённой и здоровой кожей

(Таблица 18).

Ген	Log FC	Corr.	Локус на	Группа	Бета-	Corr.
	эксрпессии	p.value	чипе	локуса	разница	p.value
S100A7A	9.840	3.6E-155	cg17496887	TSS1500	-0.124	7.9E-11
S100A7A	9.840	3.6E-155	cg12067024	TSS1500	-0.116	1.7E-10
S100A8	7.252	2.1E-163	cg01431057	Body	-0.100	4.2E-11
S100A8	7.252	2.1E-163	cg20335425	5'UTR	-0.127	7.9E-16
S100A9	7.364	3.3E-132	cg16139316	5'UTR	-0.157	1.8E-15
S100A9	7.364	3.3E-132	cg03514239	TSS1500	-0.101	1.3E-13
S100A9	7.364	3.3E-132	cg03165378	TSS1500	-0.109	1.4E-14
S100A9	7.364	3.3E-132	cg06355720	3'UTR	-0.120	4.2E-15
S100A9	7.364	3.3E-132	cg20169988	Body	-0.133	8.7E-15
SERPINB3	5.726	9.7E-121	cg03404572	TSS200	-0.113	1.3E-12
AIM2	2.578	5.2E-46	cg07195224	TSS1500	-0.130	4.7E-12
AIM2	2.578	5.2E-46	cg10636246	TSS1500	-0.115	2.0E-11
AIM2	2.578	5.2E-46	cg17217296	TSS1500	-0.104	1.2E-11
ANKRD33B	-2.590	8.7E-144	cg05524458	Body	0.138	4.7E-16
CAMP	1.750	9.4E-12	cg19440734	TSS200	-0.128	2.4E-12

Таблица 18. Список дифференциально метилированных локусов, гены которых являются дифференциально экспрессирующимися.

3.5.2 Выявление корреляции между метилированием ДНК и экспрессией через принцип транзитивности.

Несмотря на то, что данные, которые мы агрегировали с помощью метаанализа, не являются парными, актуальным вопросом было восстановление ассоциации между метилированием ДНК и экспрессией генов с помощью транзитивности корреляции. Соответственно, имея информацию о какомнибудь векторе значений, которые есть для каждой из баз данных (и для экспрессионных данных и для метиломных данных), мы, в итоге, смогли бы восстановить корреляцию между экспрессией генов и метилированием ДНК. Таким вектором значений может стать бинарный вектор фенотипов, где 0обозначение образца больного псориазом, а 1- обозначение образца здоровой Соответственно, уровень кожи. для пар локусов, для которых И метилирования ДНК достаточно высоко коррелирует с вектором фенотипов и уровень генной экспрессии достаточно хорошо коррелирует с вектором фенотипов можно ожидать корреляции между вектором метилирования ДНК и вектором генной экспрессии. Тем не менее, корреляция между двумя числами не является бинарной, поэтому не обязательно должна быть транзитивной. Справедливым является вопрос, в каких ситуациях будет выполняться условие транзитивности для коэффициентов корреляции экспрессии и фенотипа R_{EP}, корреляции метилирования ДНК и фенотипа R_{MP}, а также корреляции экспрессии и метилирования ДНК R_{EM}. Рассмотрим

корреляционную матрицу R $\begin{pmatrix} 1 \\ R_{EP} & 1 \\ R_{MP} & R_{EM} & 1 \end{pmatrix}$. Определителем этой матрицы будет $det(R) = 1 + 2R_{EP}R_{MP}R_{EM} - R_{EP}^2 - R_{MP}^2 - R_{EM}^2$. Ковариационная матрица должна быть положительно определена, откуда det(R) > 1 и $1 + 2R_{EP}R_{MP}R_{EM} > R_{EP}^2 + R_{MP}^2 + R_{EM}^2$;

Какие значения может принимать R_{EM} при условии, что R_{EP} и R_{MP} определены? Из определителя матрицы:

$$\begin{split} R_{EP} R_{MP} &- \sqrt{1 - R_{EP}^2 - R_{MP}^2 + R_{EP}^2 R_{MP}^2} < R_{EM} < \\ R_{EP} R_{MP} &+ \sqrt{1 - R_{EP}^2 - R_{MP}^2 + R_{EP}^2 R_{MP}^2} \end{split}$$

Рассмотрим ситуацию, при которой мы наблюдаем негативную корреляцию между экспрессией и метилированием. Если мы ожидаем, что $R_{EM} < 0$, а $R_{EP} > 0$ и $R_{MP} < 0$ то:

$$R_{EM} < R_{EP}R_{MP} - \sqrt{1 - R_{EP}^2 - R_{MP}^2 + R_{EP}^2 R_{MP}^2} < 0$$

И если $R_{EM} > 0$, а $R_{EP} < 0$ и $R_{MP} > 0$ то:

$$R_{EM} > R_{EP}R_{MP} + \sqrt{1 - R_{EP}^2 - R_{MP}^2 + R_{EP}^2 R_{MP}^2} > 0$$

Что эквивалентно уравнению: $R_{EP}^2 + R_{MP}^2 > 1$, которое, в свою очередь, является формулой окружности на плоскости.

R2 Expression vs Phenotype

Рисунок 14. Условие определённой корреляции между экспрессией и метилированием через третью переменную. Если точка попадает в область A, то корреляция между экспрессией и метилированием негативна, а если в область B, то корреляция между экспрессией и метилированием позитивна.

Тогда, на плоскости в диапазоне [-1;1] можно отложить окружность, выход за которую будет условием определённой корреляции (рисунок 14), причем, если точка пересечения значений корреляции попадает в область А-корреляция между экспрессией и метилированием будет негативной, а если в точку В- корреляция между экспрессией и метилированием ДНК будет, соответственно, позитивной. Для того чтобы оценить корреляцию экспрессии генов с вектором фенотипов и корреляцию метилирования ДНК с вектором фенотипов использовали коэффициент корреляции Спирмена с отрезом по р-значению после FDR-поправки <0.01.

Помимо простого пересечения списков дифференциально метилированных дифференциально экспрессированных локусов И генов, ΜЫ искали достоверную корреляцию между уровнем метилирования ДНК и уровнем генной экспрессии. Для того чтобы корреляция между экспрессией и метилированием была достоверной, для одного гена и локуса в этом гене должно выполняться неравенство $R_{EP}^2 + R_{MP}^2 > 1$, Где R_{EP} - корреляция между вектором экспрессии этого гена и вектором фенотипов образцов, составляющих вектор экспрессии, R_{EM} - корреляция между вектором бетазначений метилирования ДНК и векторов фенотипов (рисунок 15). Такой анализ позволил выявить те локусы, метилирование ДНК и экспрессия которых однозначно коррелируют отрицательно, т.е. метилирование ДНК проявляет роль супрессора генной экспрессии. Так как в анализ вошли только те локусы, уровень корреляции которых между экспрессией и фенотипом и метилированием ДНК и фенотипом были высоки, то ожидалось, что мы сможем выявить только очень небольшое количество таких локусов. Всего мы выявили 149 локусов с транзитивной корреляцией. Что интересно, в этот список попало большое количество локусов, ассоциированных с белками комплекса S100A, что лишний раз подтверждает гипотезу о регуляторном влиянии уровня метилирования ДНК на экспрессию генов этих белков. Помимо белков комплекса S100A, корреляция была определена для генов PHYHD1, PI3, ZBTB4 и ZC3H12A. Что интересно, в регуляции гена PHYHD1 ранее не был выявлен вклад метилирования ДНК, хотя в предыдущих работах этот ген был продемонстрирован как мишень для базируются методов терапии, которые на изменении окислительновосстановительного статуса в коже, поражённой псориазом [Gu, 2015], и выдвигалось предположение о специфическом составе GC в регуляторных областях этого гена [Swindell, 2014]. Уровень метилирования ДНК этого гена положительно коррелирует с вектором фенотипов, где фенотип здоровой

кожи был обозначен как 0, а фенотип поражённой псориазом кожи был обозначен как 1 (таблица 19).

Рисунок 15. Гены и локусы на чипе Illumina Methylation BeadChip 450k с определённой экспрессией между уровнем экспрессии и метилирования ДНК. Красным отмечены пробы, для которых выполняется условие определённости корреляции через определитель матрицы. Для локусов, точки которых попали в правый верхний или левый нижний угол за пределы матрицы, определена позитивная корреляция между экспрессией и метилированием ДНК, а для локусов, которые попали за пределы круга в левом верхнем и правом нижнем углу определена негативная корреляция между экспрессией генов и метилированием ДНК.

Для гена PI3 уже была показана роль метилирования ДНК в регуляции работы этого гена: при воздействии деметилирующими агентами в предыдущих исследованиях показывали дифференциальную активность этого гена [Pawlak, 2016]. Для гена ZBTB4, который сам по себе является эпигенетическим регулятором, была показана достоверная корреляция между экспрессией и уровнем метилирования. Для гена ZC3H12A была показана роль в регуляции апоптоза и иммунного ответа, в том числе в супрессии *IL-17*A-*IL-17*C- зависимого воспаления в коже.

Ген	Название пробы на чипе	Корреляция между экспрессией и фенотипом	p.value корреляции экспрессии с FDR	Корреляция между метилирование ДНК и фенотипом	p.value корреляции метилирования ДНК с FDR	$\mathbf{R}_{ep}^2 + \mathbf{R}_{mp}^2$
PHYHD1	cg14153069	0.872	3.90E-55	-0.612	2.24E-15	1.135
ANKRD33B	cg05524458	0.815	2.52E-43	-0.688	6.12E-21	1.139
MFHAS1	cg01274122	-0.875	7.94E-56	-0.616	1.11E-15	1.146
PLXNA2	cg19721764	0.813	6.27E-43	-0.698	1.02E-21	1.148
CYP2S1	cg19430423	-0.725	2.57E-30	0.793	6.57E-31	1.156
MCC	cg02551980	0.825	3.21E-45	-0.700	7.09E-22	1.172
SLC29A1	cg22330763	0.807	6.93E-42	-0.723	6.09E-24	1.175
S100A9	cg03514239	-0.874	1.01E-55	0.644	1.58E-17	1.180
ZBTB4	cg07565956	0.876	3.27E-56	-0.644	1.58E-17	1.183
ZC3H12A	cg00859858	-0.835	5.03E-47	0.699	7.85E-22	1.187
ZC3H12A	cg07813495	-0.835	5.03E-47	0.701	6.03E-22	1.189
S100A9	cg20169988	-0.874	1.01E-55	0.664	5.08E-19	1.206
S100A9	cg03165378	-0.874	1.01E-55	0.665	4.05E-19	1.208
PI3	cg02733351	-0.899	2.27E-62	0.633	8.47E-17	1.210
S100A9	cg06355720	-0.874	1.01E-55	0.671	1.45E-19	1.216
S100A8	cg20335425	-0.876	3.27E-56	0.675	7.75E-20	1.224
SPRR2A	cg18766755	-0.884	2.40E-58	0.667	3.09E-19	1.228
S100A9	cg16139316	-0.874	1.01E-55	0.686	9.42E-21	1.236
PHYHD1	cg13613439	0.872	3.90E-55	-0.718	1.82E-23	1.276

Таблица 19. Топ-20 локусов с определённой корреляцией между уровнем метилирования ДНК локуса и уровнем экспрессии гена, который ассоциирован с этим локусом.

3.6. Оценка метилирования ЛНК В сайтах уровня посадки транскрипционных регуляторов, связанных с дифференциально экспрессирующимися генами и поиск генов, экспрессия которых объясняться дифференциальной может активностью транскрипционных регуляторов в результате метилирования их сайтов посадки

Метилированные СрG островки участвуют в привлечении деацетилаз гистонов (HDACs) и других факторов, ассоциированных с замалчиванием генов [Jones et al., 1998]. В зависимости от сайта метилирования, данная модификация регуляторных областей генов может как положительно, так и отрицательно влиять на регуляцию транскрипции [Jones et al., 2001]. Показано, что дифференциальное метилирование ДНК в сайте посадки транскрипционного фактора менять вероятность может связывания транскрипционного регулятора с мотивом, что, в дальнейшем, влияет на экспрессию генов-мишеней данного фактора транскрипции. На следующем этапе исследования мы оценивали уровень метилирования в сайтах посадки транскрипционных факторов, которые входили в маркерные орграфы. В первую очередь, нас интересовало дифференциальное метилирование сайтов связывания транскрипционных факторов первого порядка, таких ТФ, которые непосредственно регулировали дифференциально экспрессирующийся ген.

3.6.1 Оценка уровня метилирования ДНК в сайтах связывания ТФ, находящихся внутри локусов, различающихся по уровню метилирования между поражённой и здоровой кожей.

Мы выявили 18 дифференциально метилированных локусов, в окрестностях которых находились сайты связывания транскрипционных факторов, были обнаружены гены, для которых ранее уже была идентифицирована роль метилирования ДНК в регуляции их экспрессии. Но связь между паттерном

метилирования ДНК и посадкой транскрипционного фактора в этих локусах для псориаза была показана впервые в данной работе.

Большая часть генов группы S100A расположена рядом с CpG-островками, а всю группу S100A покрывают 163 пробы на чипе. При этом все гены S100A занимают участок длиной около 1.7 mb на хромосоме 1q21, что даёт относительно малое количество информации о регуляторных областях этого Тем обнаруженные дифференциально кластера генов. не менее, метилированные локусы в генах S100A9 и S100A8 являются также сайтами посадки для транскрипционного фактора STAT1 [Capitini et al., 2014].Помимо дифференциально метилированнного сайта посадки STAT1 в генах S100A, сайты связывания этого ТФ в генах OAS2 и LYPD1 также оказались дифференциально метилированными при псориазе. Причём, если для OAS2 уже была показана роль в развитии псориаза [Gu, 2016], то для гена LYPD1, измененная экспрессия которого ассоциирована с гепатокарциномой и синдромом Коудена, такая ассоциация показана нами впервые. Синдром Коудена характеризуется множественными гамартомами узловыми доброкачественными образованиями, которые часто встречаются на коже людей в возрасте и являются аномалиями клеточной дифференцировки (таблица 20) [Mester, 2015].

Название локуса на чипе	Ген	ТФ	Бета- разица между LS и Н кожей	Взаимная информация графа	Дистанция до ТСС
cg02772121	TRIM15	RCOR1	-0.11907	0.619	361
cg03165378	S100A9	STAT1	-0.1093	0.749	-28
cg04880990	KRT6A	STAT1	-0.11502	0.434	-899
cg06261066	TGM6	TEAD4	-0.10488	0.256	-924
cg07912689	ZBP1	RCOR1	-0.12208	0.614	-43

Таблица 20. Список сайтов посадки ТФ с дифференциальным уровнем метилирования ДНК

cg14646244	SLC26A4	RCOR1	-0.10642	0.713	-787
cg14826683	SPRR2D	JUNB	-0.11916	0.511	524
cg19371652	OAS2	STAT1	-0.11097	0.426	208
cg19371652	OAS2	RCOR1	-0.11097	0.426	72
cg19440734	CAMP	<i>TP63</i>	-0.12848	0.400	-313
cg19440734	CAMP	<i>TP63</i>	-0.12848	0.400	-281
cg19440734	CAMP	<i>TP63</i>	-0.12848	0.400	-367
cg19440734	CAMP	EHF	-0.12848	0.400	-87
cg19440734	CAMP	<i>TP63</i>	-0.12848	0.400	-413
cg19440734	CAMP	E2F8	-0.12848	0.400	-34
cg19440734	CAMP	<i>TP63</i>	-0.12848	0.400	-238
cg20335425	S100A8	STAT1	-0.12711	0.400	106
cg26348348	LYPD1	STAT1	-0.13937	0.400	203

Помимо этих генов, в списки сайтов посадки ТФ с дифференциальным метилирования cg19440734, уровнем попал также локус который ассоциирован с белком САМР. Белок САМР является членом семейства антимикробных пептидов, для которых показана роль В индукции внеклеточного протеолиза участие антибактериальном, И В противогрибковом и противовирусном ответе, в клеточном хемотаксисе и регуляции воспалительных реакций [Zanetti, 2004]. Данный локус оказался сайтом посадки для таких транскрипционных регуляторов, как TP63, ЕНF и E2F8 (таблица 20). Для TP63 в предыдущих исследованиях уже была показана ассоциация с псориазом [Yin, 2015], а также роль метилирования ДНК в регуляции данного ТФ в развитии различных типов рака [Rotondo, 2016]. Участи метилирования ДНК в регуляции активности данного ТФ при псориазе впервые показано в данной работе. Транскрипционный фактор EHF является эпителий-специфическим транскрипционным фактором, который участвует в регуляции клеточной дифференцировки и канцерогенезе, а также в ингибировании канцерогенеза через активацию апоптоза [Lv, 2016].

Экспрессия гена САМР повышена в поражённой псориазом коже, поэтому, возможно, ЕНF через активацию экспрессии САМР регулирует антибактериальную защиту, а также, возможно, участвует в регуляции гиперпролиферации кератиноцитов. Транскрипционный фактор E2F8 также участвует в регуляции клеточной пролиферации.

3.6.2 Анализ метилирования ДНК в сайтах посадки ТФ, полученных с помощью оценки пересечения списков ДЭГ и ДМЛ

Пересечение 919 дифференциально экспрессирующихся генов с множеством локусов с дифференциальным метилированием ДНК даже без ассоциативных оценок может свидетельствовать о влиянии метилирования ДНК в локусе на экспрессию гена. Поэтому мы проанализировали взаимное вхождение сайтов связывания транскрипционных регуляторов с ДНК в дифференциально метилированные локусы, которые одновременно были ассоциированы с дифференциально экспрессирующимися генами. Всего в анализ вошло 48 локусов, расположенных на чипе ДНК Illumina Methylation BeadChip 450k. Среди них 11 уникальных локусов находились рядом с сайтами связывания транскрипционных регуляторов первого порядка, которые мы предсказали с помощью алгоритма поиска локального графа максимальной взаимной информации. Часть пар «транскрипционный фактор-мишень» (STAT1-S100A9; STAT1-S100A8; STAT1-OAS2; TP63-CAMP; R2F8-CAMP; EHF-САМР и STAT1-LYPD1) уже была рассмотрена в предыдущем разделе и на интерпретировании биологического значения этих пар взаимодействий мы останавливаться не будем. Другие пары продемонстрированы в этом разделе впервые. Например, для гена KRT6A была показана роль в регуляции иммунного ответа при повреждении кожи в ходе развитии псориаза [Lessard, 2013], а в промоторе этого гена был выявлен сайт связывания STAT1. Как оказалось, сайте также CpG локус, который В ЭТОМ находится дифференциально метилирован в поражённой и здоровой коже, что

позволяет предположить, что в регуляции активности данного гена участвует метилирование ДНК (Таблица 21).

Таблица 21. Список дифференциально экспрессирующихся генов, которые одновременно имеют дифференциально метилированные локусы ДНК в своих регуляторных последовательностях, которые перекрываются с сайтами связывания транскрипционных факторов.

Название локуса	Ген	logFC	p-value c FDR	Группа пробы	Бета- разница	p-value c FDR	ТФ
			разницы			бета-	
			экспрессии			значения	
cg03165378	S100A9	7.363578	3.32E-132	TSS1500	-0.1093	1.38E-14	STAT1
cg04880990	KRT6A	3.172121	1.11E-51	TSS1500	-0.11502	1.19E-11	STAT3
cg06261066	TGM6	2.708746	7.80E-33	TSS1500	-0.10488	3.39E-06	TEAD4
cg07912689	ZBP1	2.018407	3.41E-29	1stExon	-0.12208	1.30E-12	RCOR1
cg14646244	SLC26A4	2.191811	5.72E-41	TSS1500	-0.10642	1.08E-12	RCOR1
cg14826683	SPRR2D	5.451157	2.70E-168	TSS1500	-0.11916	3.19E-10	JUNB
cg19371652	OAS2	3.687266	5.22E-120	TSS1500	-0.11097	8.73E-12	STAT1
cg19371652	OAS2	3.687266	5.22E-120	TSS1500	-0.11097	8.73E-12	RCOR1
cg19440734	CAMP	1.749731	9.42E-12	TSS200	-0.12848	2.36E-12	TP63
cg19440734	CAMP	1.749731	9.42E-12	TSS200	-0.12848	2.36E-12	E2F8
cg19440734	CAMP	1.749731	9.42E-12	TSS200	-0.12848	2.36E-12	EHF
cg20335425	S100A8	7.251844	2.09E-163	5'UTR	-0.12711	7.93E-16	STAT1
cg26348348	LYPD1	2.584215	1.46E-24	1stExon	-0.13937	6.41E-17	STAT1

Другим примером является ген TGM6, который важен для поддержания структурны кератина в кератиноцитах [Oudot, 2009]. В нашем исследовании идентифицировали не только дифференциальную ΜЫ экспрессию И дифференциальное метилирование этого гена, также HO выдвинули предположение, что в регуляции этого гена участвует транскрипционный фактор TEAD4, который является онкосупрессором и активатором апоптоза [Lim, 2018]. По всей видимости, гиперэкспрессия гена TGM6 может быть объяснена утолщением кожи в области псориатической бляшки вследствие гиперпролиферации кератиноцитов, а участие в регуляции этого гена транскрипционным фактором TEAD4 даёт возможность предположить, что он косвенно участвует также и в регуляции клеточной пролиферации. Также для пары RCOR1-OAS2 впервые была показана связь с псориазом, тогда как в предыдущих работах отмечали роль RCOR1 как регулятора клеточной дифференциации [Boxer, 2014], а для OAS2- была показана роль метилирования ДНК и активность в псориазе [Gu, 2016]

Ген SPRR2D участвует в регуляции ороговения эпидермиса [Lin, 2011]. Этот ген является достоверно дифференциально экспрессированным при псориазе, а его экспрессия регулируется транскрипционным фактором JUNB, ассоциированным с развитием псориаза в различных литературных источниках [Chamcheu et al., 2018; Uluckan & Wagner, 2016].

По результатам данного этапа работы можно сделать вывод, что в списках, которые содержат дифференциально экспрессирующиеся гены и регуляторы их экспрессии, содержится примерно поровну генов, связанных с регуляцией клеточного цикла, пролиферации, кератинизации и генов, участвующих в регуляции иммунного ответа. Несмотря на то, что в настоящее время иммуноцентрическая модель развития псориаза является превалирующей, данные результаты подчеркивают роль структурных клеток кожи в патогенезе псориаза.

3.6.3 Оценка уровня метилирования ДНК сайтов посадки транскрипционных факторов в локусах с корреляцией между уровнем метилирования ДНК и уровнем экспрессии гена

В этой части исследования мы отошли от простого анализа пересечения множества локусов с дифференциальным уровнем метилирования ДНК с множеством генов с дифференциальной экспрессией между поражённой и здоровой кожей, и решили восстановить связь между метилированием и экспрессией. Так как было показано, что уровень метилирования ДНК может влиять на генную экспрессию, в том числе в сайтах связывания транскрипционных факторов с ДНК, мы использовали два подхода для восстановления связи уровня метилирования ДНК и уровня генной экспрессии. После чего мы, аналогично предыдущим подразделам, искали

вхождение сайтов связывания ТФ с локусами, для которых была показана корреляция между уровнем генной экспрессии и метилирования ДНК.

3.6.3.1. Анализ пересечения сайтов посадки транскрипционных факторов с локусами с транзитивной корреляцией между экспрессией, метилированием ДНК и фенотипом.

На данном этапе работы мы оценивали пересечение пиков, выявленных в экспериментах по иммунопреципитации хроматина с локусами, для которых условие транзитивности экспрессией выполнялось между генов. метилированием ДНК и вектором фенотипов. Наличие таких локусов говорит об обратной связи между уровнем метилирования ДНК и уровнем экспрессии, т.е. о подавлении экспрессии гена через метилирование ДНК. В ходе такого анализа мы нашли 42 локуса, которые удовлетворяли требованиям для 4 уникальных транскрипционных факторов (STAT1, STAT2, RCOR1 и JUNB). Далее для этих локусов мы оценивали пересечение с сайтами связывания транскрипционного фактора с ДНК. Всего мы нашли пересечение для двух транскрипционных регуляторов (STAT1 и STAT3) в трёх локусах для трёх генов. Первым геном, в регуляции которого участвуют, по всей видимости, одновременно STAT1 и STAT3, оказался ген PI3. Для данного гена была показана ассоциация с псориазом в предыдущих исследованиях [Swindell, 2015], но механизм регуляции экспрессии гена через дифференциальное метилирование ДНК в сайтах связывания его транскрипционных регуляторов продемонстрирован нами впервые (Таблица 22).

Таблица 22. Список генов и их локусов с определённой корреляцией между экспрессией гена и уровнем метилирования ДНК, которые попали в предполагаемый сайт посадки ТФ, который участвует в регуляции гена в столбце «Ген»

Имя локуса	Ген	ТФ	R2 экспр.	FDR экспр	R2 метил.	FDR метил	Квадрат общей корреляции
cg00085448	OAS2	RCOR1	-0.852	1.48E- 50	0.590	4.75E- 14	1.075

cg00085448	OAS2	STAT1	-0.852	1.48E- 50	0.590	4.75E- 14	1.075
cg00085448	OAS2	STAT1	-0.852	1.48E-	0.590	4.75E-	1.075
0				50		14	
cg00085448	OAS2	RCOR1	-0.852	1.48E-	0.590	4.75E-	1.075
				50		14	
cg00175901	OAS2	RCOR1	-0.852	1.48E- 50	0.526	1.11E- 10	1.003
cg00175901	OAS2	STAT1	-0.852	1.48E- 50	0.526	1.11E- 10	1.003
cg00175901	OAS2	STAT1	-0.852	1.48E- 50	0.526	1.11E- 10	1.003
cg00175901	OAS2	RCOR1	-0.852	1.48E-	0.526	1.11E-	1.003
cg02711163	\$10049	STAT1	-0.874	50 1.01F-	0.496	$\frac{10}{2.43E_{-}}$	1.011
cg02/11105	5100117	51111	0.071	55	0.170	09	1.011
cg02733351	PI3	STAT3	-0.899	2.27E-	0.633	8.47E-	1.210
ag0 272225 1	D12	STAT1	0.800	62 2.27E	0.622	17 • 47e	1 210
cg02/55551	FIS	SIAII	-0.899	62	0.055	8.47E- 17	1.210
cg02733351	PI3	STAT3	-0.899	2.27E-	0.633	8.47E-	1.210
000722251	DI2	STAT1	0.800	62 2.27E	0.622	17 8 47E	1 210
cg02/33351	P15	SIAII	-0.899	2.27E- 62	0.033	8.47E- 17	1.210
cg02733351	PI3	STAT3	-0.899	2.27E-	0.633	8.47E-	1.210
eg02772121	TRIM15	RCOR1	-0.815	62	0.640	1/ 280F-	1.075
Cg02772121	1 111115	RCORI	-0.015	43	0.040	17	1.075
cg03165378	S100A9	STAT1	-0.874	1.01E-	0.665	4.05E-	1.207
aa0.4990000	VDT6 A	57172	0.832	55 1.00E	0.507	19 1.74E	1.050
Cg04000990	KKIUA	SIAIS	-0.832	1.90L- 46	0.397	1.74L- 14	1.050
cg05701418	TRIM15	RCOR1	-0.815	2.40E-	0.637	4.67E-	1.071
105(0100	0.4.02	D COD 1	0.050	43	0.625	17	1 1 2 0
cg12560128	OAS2	RCORI	-0.852	1.48E- 50	0.635	6.72E- 17	1.129
cg12560128	OAS2	STAT1	-0.852	1.48E-	0.635	6.72E-	1.129
	0.4.02		0.050	50	0.625	17	1 1 2 0
cg12560128	OAS2	STATT	-0.852	1.48E- 50	0.635	6.72E- 17	1.129
cg14826683	SPRR2D	JUNB	-0.865	1.26E-	0.564	1.43E-	1.068
aa1(200(())	0452	DCOD1	0.953	53	0.525	12	1.012
cg10399664	UAS2	KCORI	-0.852	1.48E- 50	0.535	4.21E- 11	1.013
cg19371652	OAS2	RCOR1	-0.852	1.48E-	0.574	4.20E-	1.055
				50		13	
cg19371652	OAS2	STAT1	-0.852	1.48E- 50	0.574095	4.20E- 13	1.055
cg19931348	PI3	STAT3	-0.899	2.27E-	0.551872	6.48E-	1.113

				62		12	
cg19931348	PI3	STAT3	-0.899	2.27E- 62	0.551872	6.48E- 12	1.113
cg19931348	PI3	STAT1	-0.899	2.27E- 62	0.551872	6.48E- 12	1.113
cg19931348	PI3	STAT1	-0.899	2.27E- 62	0.551872	6.48E- 12	1.113
cg19931348	PI3	STAT3	-0.899	2.27E- 62	0.551872	6.48E- 12	1.113
cg19931348	PI3	STAT3	-0.899	2.27E- 62	0.551872	6.48E- 12	1.113
cg19931348	PI3	STAT3	-0.899	2.27E- 62	0.551872	6.48E- 12	1.113
cg20335425	S100A8	STAT1	-0.876	3.27E- 56	0.675073	7.75E- 20	1.224
cg20870559	OAS2	RCOR1	-0.852	1.48E- 50	0.568406	8.57E- 13	1.049
cg20870559	OAS2	STAT1	-0.852	1.48E- 50	0.568406	8.57E- 13	1.049
cg20870559	OAS2	STAT1	-0.852	1.48E- 50	0.568406	8.57E- 13	1.049
cg20870559	OAS2	RCOR1	-0.852	1.48E- 50	0.568406	8.57E- 13	1.049
cg26348348	LYPD1	STAT1	-0.800	7.54E- 41	0.699074	8.62E- 22	1.130
cg27147785	OAS2	RCOR1	-0.852	1.48E- 50	0.634006	8.23E- 17	1.128
cg27147785	OAS2	STAT1	-0.852	1.48E- 50	0.634006	8.23E- 17	1.128
cg27147785	OAS2	STAT1	-0.852	1.48E- 50	0.634006	8.23E- 17	1.128
cg27147785	OAS2	RCOR1	-0.852	1.48E- 50	0.634006	8.23E- 17	1.128

Помимо гена PI3, аналогичная закономерность была показана для генов OAS2, TRIM15, KRT6A, SPRR2D, S100A8 и S100A9, также для транскрипционного регулятора STAT1, что подтверждает выводы, сделанные в предыдущих главах: помимо того, что в регуляции как минимум этих двух генов семейства S100A участвует метилирование ДНК, метилирование сайтов связывания транскрипционных факторов может влиять на экспрессию их генов-мишеней.

3.6.3.2. Анализ метилирования ДНК в окрестности сайтов посадки ТФ, полученных с помощью пермутаций

В геноме человека около 28 000 000 CpG-сайтов, которые могут являться мишенями для модификации метилтрансферазами, а чип Illumina Methylaiton BeadChip 450k оценивает уровень метилирования только 450 000 локусов и предоставляет информацию о значении метилирования ДНК только в 1.6% локусов. СрG-сайты в геноме человека часто организованы в СрG-островки локусы с большим содержанием CpG-последовательностей, которые, как правило, метилированы консервативно по всему СрG-островку. Поэтому нас интересовали CpG-сайты, входящие в CpG-островки, уровень также метилирования ДНК в которых коррелировал с уровнем экспрессии генов, аннотированных в этих локусах. Поскольку, как правило, весь CpG-островок единообразно, информацию метилирован об одном дифференциально сайте. входящем метилированном в такой островок, можно аппроксимировать на весь локус. Поэтому, даже если сайт посадки транскрипционного регулятора находится на значительном расстоянии от сайта СС-пробы чипа, приходящейся на островок, но при этом сайт посадки содержит в своём мотиве CG-последовательность, можно предположить, что цитозин в этом сайте также метилирован.

На последнем этапе работы мы анализировали вхождение локусов с достоверной корреляцией между уровнем метилирования ДНК и уровнем экспрессии генов этих локусов в диапазон транскрипционных регуляторов, которые были получены с помощью алгоритма поиска максимального локального орграфа. В первую очередь нас интересовали локусы с определённой корреляцией, которые одновременно перекрывались с активными транскрипционными факторами, а также входили в состав Србостровка (таблица 23).

Таблица 23. Пробы с определённой корреляцией между уровнем метилирования ДНК и экспрессии генов, которые одновременно попали в сайт посадки транскрипционного фактора и аннотированы с СрG-островком.

Name	Gene	TF	corr	p_value	BH	Часть островка
cg11208222	C5orf49	ZNF263	-0.396	1.1E-07	1.2E-06	S_Shore
cg01205165	ETNK2	UBTF	-0.341	1.1E-07	1.2E-06	N_Shore
cg06289725	CHRM1	GATA6	-0.340	1.1E-07	1.2E-06	N_Shore
cg21535580	ETNK2	UBTF	-0.338	1.1E-07	1.2E-06	S_Shore
cg19071452	NMI	<i>E2F8</i>	-0.319	1.1E-07	1.2E-06	S_Shore
cg27473538	CD38	RCOR1	-0.289	1.1E-07	1.2E-06	Island
cg19257550	CA9	YY1	-0.287	1.1E-07	1.2E-06	N_Shore
cg16039071	C6orf223	EHF	-0.286	1.2E-04	1.3E-03	N_Shore
cg16039071	C6orf223	STAT1	-0.286	1.2E-04	1.3E-03	N_Shore
cg04624110	MACROD2	GLI2	-0.284	1.1E-07	1.2E-06	Island
cg19241468	PARP14	STAT1	-0.280	2.4E-04	2.6E-03	N_Shore
cg19241468	PARP14	STAT2	-0.280	2.4E-04	2.6E-03	N_Shore
cg01812577	CHRM1	GATA6	-0.279	2.4E-04	2.6E-03	N_Shore
cg08912317	SCIN	GATA3	-0.273	3.6E-04	3.8E-03	Island
cg08912317	SCIN	GLI2	-0.273	3.6E-04	3.8E-03	Island
cg15837913	CD274	EHF	-0.272	1.1E-07	1.2E-06	N_Shore
cg23169957	MACROD2	GLI2	-0.263	1.2E-04	1.3E-03	Island
cg20667664	NR1D1	GLI2	-0.260	7.2E-04	7.4E-03	N_Shore
cg02275294	SOAT1	AR	-0.252	8.4E-04	8.5E-03	N_Shore
cg02275294	SOAT1	VEZF1	-0.252	8.4E-04	8.5E-03	N_Shore
cg00630212	CXCL2	STAT1	-0.248	6.0E-04	6.2E-03	Island
cg00630212	CXCL2	STAT2	-0.248	6.0E-04	6.2E-03	Island
cg07002447	CILP2	KLF9	-0.248	3.6E-04	3.8E-03	Island
cg23479742	CILP2	KLF9	-0.248	6.0E-04	6.2E-03	Island
cg11210878	CHRM1	<i>GATA6</i>	-0.243	7.2E-04	7.4E-03	N_Shore
cg02990368	ETNK2	UBTF	-0.240	7.2E-04	7.4E-03	Island
cg18938204	EMILIN3	ESR1	-0.237	9.6E-04	9.7E-03	Island
cg18587340	EMILIN3	ESR1	0.231	9.6E-04	9.7E-03	Island
cg18587340	EMILIN3	SPDEF	0.231	9.6E-04	9.7E-03	Island
cg20219035	PLBD1	RCOR1	0.242	4.8E-04	5.0E-03	Island
cg09053907	BTC	GLI2	0.258	4.8E-04	5.0E-03	S_Shore
cg19863592	GLT1D1	STAT3	0.260	1.1E-07	1.2E-06	S_Shore
cg14721618	SOCS3	STAT3	0.262	1.2E-04	1.3E-03	Island
cg04759439	ERC2	LEF1	0.264	1.1E-07	1.2E-06	Island
cg11905611	PLBD1	RCOR1	0.269	2.4E-04	2.6E-03	Island
cg01799653	ANKRD33B	SMAD4	0.280	1.2E-04	1.3E-03	Island
cg14791413	GLT1D1	STAT3	0.306	1.1E-07	1.2E-06	S_Shore
cg07634645	PLBD1	RCOR1	0.317	1.1E-07	1.2E-06	Island
cg17768691	PLBD1	RCOR1	0.340	1.1E-07	1.2E-06	Island
cg21184415	EMILIN3	SPDEF	0.429	1.1E-07	1.2E-06	S_Shore

Таких уникальных локусов мы выявили 35, причём некоторые локусы, на которые приходились пробы чипа, попадали в сайты связывания нескольких транскрипционных регуляторов. Несмотря на существующую гипотезу о негативном влиянии уровня метилирования промотора гена на экспрессию этого гена, такая закономерность реализуется не во всех случаях. В ходе идентифицировали данного исследования ΜЫ возможную роль метилирования ДНК в регуляции гена СНКМ1 с помощью изменения метилирования ДНК в окрестностях сайта посадки транскрипционного фактора GATA6. Существуют методы терапии, направленные как на изменение активности гена CHRM1, так и на изменение экспрессии и активности GATA6, основанные на применении агентов, меняющих уровень метилирования ДНК.

Помимо пары GATA6 и CHRM1, мы выявили, что белки семейства PARP, а именно, PARP14 с регуляторами *STAT2* и *STAT1*, по всей видимости, также подвержены регуляции через изменение уровня метилирования ДНК. Для белков этого класса ранее была показана роль в активации CD4+ клеток и развитии аутоиммунного ответа [Johansen et al., 2017].

В целом, анализ пересечения пиков иммунопреципитации хроматина с локусами, в которых показана корреляция между метилированием ДНК и экспрессией генов, выявил список транскрипционных факторов, в регуляции активности которых потенциально играет роль метилирование ДНК. При этом в ходе работы мы выявили списки генов, которые локализованы рядом с СрG-островками и в регуляторных областях которых находится большое TΦ. количество сайтов связывания Например. дифференциально метилированные локусы S100A, PI3 и OAS2 генов являются сайтами связывания для транскрипционных факторов STAT1, STAT2 или GATA6. Учитывая, что для регуляции этих генов ранее была продемонстрирован вклад эпигенетической компоненты [Chandra, 2018; Korkmaz, 2017; Gu, 2016], результаты данного исследования позволяют предположить о том, что

метилирование регуляторных регионов этих генов не просто влияет на экспрессию через изменение аффинности РНК-полимеразы к околопромоторными областями этих генов, но и изменяет вероятность связывания ТФ с этими локусами. Более детальный анализ метилирования и сайтов связывания регуляторных элементов в этих регионах может дать дополнительную информацию о механизмах регуляции экспрессии этого кластера генов.

ЗАКЛЮЧЕНИЕ

Развитие постгеномных технологий привело К появлению большого высокоэффективного высокопроизводительного количества методов И полногеномного анализа, среди которых можно отметить анализ метилирования СрG на микрочипах и иммунопреципитацию хроматина. Метилирование - одна из основных эпигенетических модификаций ДНК, а совокупность всех таких модификаций в геноме человека образует метилом. Для многих болезней исследователи обнаружили эпигенетическую компоненту, которая, как правило, играет большую роль в их патогенезе. К таким заболеваниям относятся и иммуновоспалительные заболевания кожи, например псориаз. В данной работе был проведен анализ всех доступных на сегодняшний момент данных экспериментов по дифференциальной экспрессии генов и метилированию ДНК в здоровой коже и в коже, пораженной псоризазом. В результате удалось выделить список из 292 значимых генов, который хорошо согласуется с результатами других исследований [Zolotarenko et al., 2016, Ahn et al., 2016], и содержит гены, отвечающие за формирование иммунного ответа и пролиферацию клеток кожи, что согласуется с основной гипотезой развития заболевания.

Предложенный метод анализа транзитивности векторов фенотипов позволил впервые выявить корреляцию между экспрессией генов, ассоциированных с возникновением псориаза, и метилированием регуляторных участков ДНК. Среди генов, экспрессия которых значимо изменяется в гиперпролиферирующих клетках результате одновременного изменения кожи, В экспрессии регулирующих их транскрипционных факторов и метилирования регуляторных участков ДНК, присутствуют известные генные, участвующие в формировании реакции воспаления и иммунного ответа, такие как S100A8 и S100A9, OAS2, PI3 и AIM2. С помощью сопоставления генных сетей с анализом ДНК-белковых взаимодействий удалось выявить транскрипционные факторы, которые потенциально участвуют в регуляции процессов, приводящих к возникновению гиперпролиферации клеток кожи. Среди таких ТФ были найдены NFKB1, EHF,

KLF15, *STAT1*, GATA6, *STAT3* и RCOR1, для которых уже неоднократно была показана роль в регуляции воспаления и пролиферации клеток кожи [Andrés et al., 2013]. При этом мы показали, что степень метилирования в окружении сайтов связывания таких транскрипционных факторов как *STAT1*, *STAT2*, GATA3, GATA6, ESR1 и RCOR1 часто изменяется в образцах кожи, взятой у больных псориазом. Суммируя результаты, полученные в ходе этого исследования, можно сделать вывод, что определены гены и транскрипционные факторы, которые играют важную роль в патогенезе псориаза, причем как для регуляторных участков выявленных генов, так и мишеней транскрипционных факторов характерно изменение степени метилирования в пораженной коже. Эти результаты могут быть применены как при разработке новых терапий псориаза, так и в качестве маркерных признаков для оценки моделей псориатической кожи.

выводы

- Проведенный мета-анализ доступных опубликованных данных по RNA-seq образцов кожи больных псориазом позволил выявить 930 генов, экспрессия которых достоверно изменена в поражённой псориазом коже. Функции большинства найденных генов связаны с регуляцией иммунного ответа или пролиферацией клеток кожи.
- 2. С помощью сравнительного мета-анализа метилирования ДНК в поражённой и здоровой коже выявлены 899 дифференциально метилированных локусов, большинство из которых расположено в районах генов, функции которых связаны с апоптозом и активацией иммунных клеток, что согласуется с иммунновоспалительной природой заболевания;
- 3. С помощью предложенного нами метода транзитивной корреляции между экспрессией генов, метилирования ДНК и вектора фенотипов обнаружено, что в псориазе для генов, принадлежащих к семейству *S100A*, а также генов *AIM2*, *PI3* существует значимая корреляция между экспрессией генов и метилированием ДНК;
- 4. Использование маркерных графов позволило выявить транскрипционные факторы *NFKB1, EHF, KLF15, STAT1, STAT3, GATA6* в качестве важных регуляторов патогенеза заболевания, которые участвуют в контроле наибольшего количества дифференциально экспрессирующихся генов;
- 5. Для дифференциально экспрессирующихся генов семейства *S100A*, а также для генов *OAS2*, *PI3 PLBD1*, *CSCL2*, *PARP14* и *EMILIN3* показано изменение профилей метилирования ДНК в областях связывания транскрипционных факторов, которые регулируют экспрессию этих генов;
- 6. Показано изменение уровня метилирования ДНК в промоторах геновмишеней транскрипционных факторов STAT1, STAT2, GATA3, GATA6, ESR1 и RCOR1.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- A.Petronis, Human morbid genetics revisited: relevance of epigenetics//TRENDS in Genetics Vol.17 No.3 March 2001
- Andrés, R. M., Montesinos, M. C., Navalón, P., Payá, M., & Terencio, M. C. (2013). NFKB1 and *STAT3* inhibition as a therapeutic strategy in psoriasis: in vitro and in vivo effects of BTH. Journal of Investigative Dermatology, 133(10), 2362-2371.
- Arsic N., Bendris N., Peter M., Begon-Pescia C., Rebouissou C., Gadea G., Bouquier N., Bibeau F., Lemmers B., Blanchard J. M. A novel function for Cyclin A2: control of cell invasion via RhoA signaling // J Cell Biol. – 2012. – T. 196, № 1. – C. 147-62.
- Babu, M. M., Luscombe, N. M., Aravind, L., Gerstein, M., & Teichmann, S. A. (2004). Structure and evolution of transcriptional regulatory networks. Current opinion in structural biology, 14(3), 283-291.
- Barker J. N. (2001). Genetic aspects of psoriasis.// Clin Exp Dermatol.-V.26(4).- P.321-5.
- Batycka-Baran, A., Hattinger, E., Zwicker, S., Summer, B., Howard, O. Z., Thomas, P., ... & Wolf, R. (2015). Leukocyte-derived koebnerisin (S100A15) and psoriasin (S100A7) are systemic mediators of inflammation in psoriasis. Journal of dermatological science, 79(3), 214-221.
- Belguise K., Kersual N., Galtier F., Chalbos D. FRA-1 expression level regulates proliferation and invasiveness of breast cancer cells // Oncogene. – 2005. – T. 24, № 8. – C. 1434-44.
- Bernstein BE, Meissner A, Lander ES. The mammalian epigenome.// Cell 2007; 128:669–681
- Blander G, Bhimavarapu A, Mammone T. SIRT1 promotes differentiation of normal human keratinocytes.// J Invest Dermatol 2009; 129:41–49
- 10. Bowcock A. M. and Cookson W. O. (2004). The genetics of psoriasis, psoriatic arthritis and atopic dermatitis.// Hum Mol Genet.- V.13 Spec No 1.- P.R43-55.

- 11. Boxer, L. D., Barajas, B., Tao, S., Zhang, J., & Khavari, P. A. (2014). ZNF750 interacts with KLF4 and RCOR1, KDM1A, and CTBP1/2 chromatin regulators to repress epidermal progenitor genes and induce differentiation genes. *Genes & development*, 28(18), 2013-2026.
- 12. Brooks WH, Le Dantec C, Pers JO, Youinou P, Renaudineau Y. Epigenetics and autoimmunity.// J Autoimmun. 2010; 34 : J207–J219.
- Butt, C., Sun, S., Peddle, L., Greenwood, C., Hamilton, S., Gladman, D., & Rahman, P. (2005). Association of nuclear factor-kappaB in psoriatic arthritis. The Journal of rheumatology, 32(9), 1742-1744.
- 14. С.Д. Эллис, Т. Дженювейн, Д. Рейнберг, М.Капаррос. Epigenetics// Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 2007.
 Москва: Техносфера, 2010 ISBN 987-5-94836-257-1
- Capitini, C. M., Nasholm, N. M., Chien, C. D., Larabee, S. M., Qin, H., Song, Y. K., ... & Fry, T. J. (2014). Absence of *STAT1* in donor-derived plasmacytoid dendritic cells results in increased *STAT3* and attenuates murine GVHD. *Blood*, *124*(12), 1976-1986.
- Caruntu, C., Boda, D., Dumitrascu, G., Constantin, C., & Neagu, M. (2015).
 Proteomics focusing on immune markers in psoriatic arthritis. Biomarkers in medicine, 9(6), 513-528.
- 17. Casalino L., Bakiri L., Talotta F., Weitzman J. B., Fusco A., Yaniv M., Verde P. Fra-1 promotes growth and survival in RAS-transformed thyroid cells by controlling cyclin A transcription // EMBO J. 2007. T. 26, № 7. C. 1878-90.
- 18. Chamcheu, J. C., Siddiqui, I. A., Adhami, V. M., Esnault, S., Bharali, D. J., Babatunde, A. S., ... & Mousa, S. A. (2018). Chitosan-based nanoformulated (–)epigallocatechin-3-gallate (EGCG) modulates human keratinocyte-induced responses and alleviates imiquimod-induced murine psoriasiform dermatitis. *International journal of nanomedicine*, *13*, 4189.
- Chandra, A., Senapati, S., Roy, S., Chatterjee, G., & Chatterjee, R. (2018).
 Epigenome-wide DNA methylation regulates cardinal pathological features of psoriasis. Clinical epigenetics, 10(1), 108.

- 20. Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation.// Science 2004; 303 : 83–86.
- 21. Chen M, Chen ZQ, Cui PG et al., The methylation pattern of p16INK4a gene promoter in psoriatic epidermis and its clinical significance. Br JDermatol 2008; 158: 987–993.
- 22. Chen, S. X., Hinds, B. R., Goodman, A. M., & Cohen, P. R. (2017). Erythrodermic Psoriasis in a Man with Monoclonal B-cell Lymphocytosis. Cureus, 9(12).
- 23. Chen, Y. C., Lin, M. C., Hsiao, C. C., Zheng, Y. X., Chen, K. D., Sung, M. T., ... & Chen, Y. M. (2017). Increased S100A15 expression and decreased DNA methylation of its gene promoter are involved in high metastasis potential and poor outcome of lung adenocarcinoma. Oncotarget, 8(28), 45710.
- 24. Chiliveru, S., Rahbek, S. H., Jensen, S. K., Jørgensen, S. E., Nissen, S. K., Christiansen, S. H., ... & Paludan, S. R. (2014). Inflammatory cytokines break down intrinsic immunological tolerance of human primary keratinocytes to cytosolic DNA. The Journal of Immunology, 1302120.
- 25. Chuang, H. Y., Lee, E., Liu, Y. T., Lee, D., & Ideker, T. (2007). Network- based classification of breast cancer metastasis. Molecular systems biology, 3(1), 140.
- 26. Cochez, P. M., Michiels, C., Hendrickx, E., Van Belle, A. B., Lemaire, M. M., Dauguet, N., ... & Coulie, P. G. (2016). AhR modulates the IL- 22- producing cell proliferation/recruitment in imiquimod- induced psoriasis mouse model. European journal of immunology, 46(6), 1449-1459.
- 27. Cuthbert GL, Daujat S, Snowden AW, Erdjument-Bromage H,Hagiwara T, Yamada M. Histone deimination antagonizes arginine methylation.// Cell 2004; 118: 545–553.
- Dobreva, G., Chahrour, M., Dautzenberg, M., Chirivella, L., Kanzler, B., Fariñas, I., ... & Grosschedl, R. (2006). SATB2 is a multifunctional determinant of craniofacial patterning and osteoblast differentiation. Cell, 125(5), 971-986.
- 29. Duffin KC, Chandran V, Gladman DD. Genetics of psoriasis and psoriatic arthirs: update and future direction// J. Rheumatol. 2008. V. 35. P. 1449-53

- 30. Duperret, E. K., Natale, C. A., Monteleon, C., Dahal, A., & Ridky, T. W. (2016). The integrin αv-TGFβ signaling axis is necessary for epidermal proliferation during cutaneous wound healing. Cell Cycle, 15(15), 2077-2086.
- 31. Eden, E., Navon, R., Steinfeld, I., Lipson, D., & Yakhini, Z. (2009). GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC bioinformatics, 10(1), 48.
- 32. Eder L., Chandran V., Gladman D. D. What have we learned about genetic susceptibility in psoriasis and psoriatic arthritis? // Curr Opin Rheumatol. 2015. T. 27, № 1. C. 91-8.
- 33. Ellinghaus E., Ellinghaus D., Stuart P. E., Nair R. P., Debrus S., Raelson J. V., Belouchi M., Fournier H., Reinhard C., Ding J., Li Y., Tejasvi T., Gudjonsson J., Stoll S. W., Voorhees J. J., Lambert S., Weidinger S., Eberlein B., Kunz M., Rahman P., Gladman D. D., Gieger C., Wichmann H. E., Karlsen T. H., Mayr G., Albrecht M., Kabelitz D., Mrowietz U., Abecasis G. R., Elder J. T., Schreiber S., Weichenthal M., Franke A. Genome-wide association study identifies a psoriasis susceptibility locus at TRAF3IP2 // Nat Genet. – 2010. – T. 42, № 11. – C. 991-5.
- 34. Esteller M. Epigenetics in cancer.// N Engl J Med 2008; 358: 1148–1159.
- 35. Fazius, E., Shelest, V., & Shelest, E. (2011). SiTaR: a novel tool for transcription factor binding site prediction. Bioinformatics, 27(20), 2806-2811.
- 36. Garshick M. K., Kimball A. B. Psoriasis and the Life Cycle of Persistent Life Effects // Dermatol Clin. 2015. T. 33, № 1. C. 25-39.
- 37. Giblin PA, Lemieux RM. LFA-1 as a key regulator of immune function: approaches toward the development of LFA-1-based therapeutics.// CurrPharm Des 2006; 12 : 2771–2795.
- Goldminz, A. M., Buzney, C. D., Kim, N., Au, S. C., Levine, D. E., Wang, A. C.,
 ... & Dumont, N. M. (2013). Prevalence of the metabolic syndrome in children with psoriatic disease. *Pediatric dermatology*, *30*(6), 700-705.
- 39. Goll MG, Kirpek ar F, Maggert KA, Yoder JA, Hsi eh CL, Zhang X. Methylation of tRNAAs p by the DNA methyltransferase homolog Dnmt2.// Science 2006; 311
 : 395–398 .

- 40. Gregory PD, Wagner K, Horz W. Histone acetylatio n and chromat in remodeling.// Exp Cell Res 2001; 265 : 195–202.
- 41. Gu, X., Boldrup, L., Coates, P. J., Fahraeus, R., Nylander, E., Loizou, C., ... & Nylander, K. (2016). Epigenetic regulation of OAS2 shows disease-specific DNA methylation profiles at individual CpG sites. Scientific reports, 6, 32579.
- 42. Gu, X., Boldrup, L., Coates, P. J., Fahraeus, R., Nylander, E., Loizou, C., ... & Nylander, K. (2016). Epigenetic regulation of OAS2 shows disease-specific DNA methylation profiles at individual CpG sites. *Scientific reports*, *6*, 32579.
- 43. Gu, X., NyLANDER, E., Coates, P. J., & Nylan, K. (2015). Oxidation reduction is a key process for successful treatment of psoriasis by narrow-band UVB phototherapy. Acta dermato-venereologica, 95(2), 140-146.
- 44. Gudjonsson JE, Ding J., Johnston A., et al., Assessment of the psoriatic transcriptome in a large sample: additional regulated genes and comparisons with in vitro models// J. Invest. Dermatol. 2010. V. 130. № 7. P. 1829-40.
- 45. Hald, A., Andrés, R. M., Salskov- Iversen, M. L., Kjellerup, R. B., Iversen, L., & Johansen, C. (2013). *STAT1* expression and activation is increased in lesional psoriatic skin. British Journal of Dermatology, 168(2), 302-310.
- 46. Holliday R, Pugh JE. DNA modification mechanisms and gene activity during development//. Science 1975; 187 : 226–23 2.
- 47. Hu, S., Wan, J., Su, Y., Song, Q., Zeng, Y., Nguyen, H. N., ... & Xia, S. (2013). DNA methylation presents distinct binding sites for human transcription factors. Elife, 2, e00726.
- 48. Hu, Z., Xiong, Z., Xu, X., Li, F., Lu, L., Li, W., ... & Peng, Y. (2012). Loss-offunction mutations in filaggrin gene associate with psoriasis vulgaris in Chinese population. Human genetics, 131(7), 1269-1274.
- 49. Hua H., Li M., Luo T., Yin Y., Jiang Y. Matrix metalloproteinases in tumorigenesis: an evolving paradigm // Cell Mol Life Sci. 2011. T. 68, № 23. C. 3853-68.
- 50. Irrera, N., Vaccaro, M., Bitto, A., Pallio, G., Pizzino, G., Lentini, M., ... & Anastasi, G. P. (2017). BAY 11-7082 inhibits the NFKB1 and NLRP3

inflammasome pathways and protects against IMQ-induced psoriasis. Clinical Science, 131(6), 487-498.

- 51. Irrera, N., Vaccaro, M., Bitto, A., Pallio, G., Pizzino, G., Lentini, M., ... & Anastasi, G. P. (2017). BAY 11-7082 inhibits the NFKB1 and NLRP3 inflammasome pathways and protects against IMQ-induced psoriasis. Clinical Science, 131(6), 487-498.
- 52. Johansen, C., Rittig, A. H., Mose, M., Bertelsen, T., Weimar, I., Nielsen, J., ... & Iversen, L. (2017). STAT2 is involved in the pathogenesis of psoriasis by promoting CXCL11 and CCL5 production by keratinocytes. PloS one, 12(5), e0176994.
- 53. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer.// Nat Rev Genet 2002; 3: 415–428.
- 54. Jones PA, Takai D. The role of DNA methylation on mammalian epigenetics.// Science 2001; 293 : 1068–1070
- 55. Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription.// Nat Genet 1998; 19 : 187–191.
- 56. Joshi, R. (2014). Learning from eponyms: George F. Odland and Odland bodies. Indian dermatology online journal, 5(3), 334.
- 57. Kastelan M, PrpicMassari L, Gruber F et al., Perforin expression is upregulated in the epidermis of psoriatic lesions.// Br J Dermatol 2004;151: 831–836.
- 58. Kawai T., Akira S. TLR signaling // Semin Immunol. 2007. T. 19, № 1. C.
 24-32.
- 59. Khan, S. A., Agrawal, S., Baral, N., & Lamsal, M. (2018). Evaluation of ADA activity as a potential marker of disease severity in psoriasis patients. Psoriasis: Targets and Therapy, 8, 59.
- 60. Kirkham B. W., Kavanaugh A., Reich K. Interleukin-17A: a unique pathway in immune-mediated diseases: psoriasis, psoriatic arthritis and rheumatoid arthritis // Immunology. 2014. T. 141, № 2. C. 133-42.

- 61. Kondo Y, Shen L, Cheng AS et al., Gene silencing in cancer by histone H3 lysine
 27 trimethylation independent of promoter DNA methylation.// Nat Genet 2008;
 40 : 741–750.
- 62. Korkmaz, F. T., & Kerr, D. E. (2017). Genome-wide methylation analysis reveals differentially methylated loci that are associated with an age-dependent increase in bovine fibroblast response to LPS. BMC genomics, 18(1), 405.
- 63. Korkmaz, S., & Korkmaz, H. (2017). Effect of alterations in apoptotic pathway on development of metabolic syndrome in patients with psoriasis vulgaris. British Journal of Dermatology, 176(6), 1549-1557.
- 64. Kulski J. K., Kenworthy W., Bellgard M., Taplin R., Okamoto K., Oka A., Mabuchi T., Ozawa A., Tamiya G., Inoko H. Gene expression profiling of Japanese psoriatic skin reveals an increased activity in molecular stress and immune response signals // J Mol Med (Berl). – 2005. – T. 83, № 12. – C. 964-75.
- 65. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14.// Cell 1993; 75 : 843–854.
- 66. Lee, M. R., & Cooper, A. J. (2006). Immunopathogenesis of psoriasis. Australasian journal of dermatology, 47(3), 151-159.
- 67. Lessard, J. C., Piña-Paz, S., Rotty, J. D., Hickerson, R. P., Kaspar, R. L., Balmain, A., & Coulombe, P. A. (2013). Keratin 16 regulates innate immunity in response to epidermal barrier breach. Proceedings of the National Academy of Sciences, 110(48), 19537-19542.
- 68. Lim, B., Kim, H. J., Heo, H., Huh, N., Baek, S. J., Kim, J. H., ... & Kim, S. Y. (2018). Epigenetic silencing of miR- 1271 enhances MEK1 and TEAD4 expression in gastric cancer. Cancer medicine.
- 69. Lima XT, Minnillo R, Spencer JM et al (2012) Psoriasis prevalence among the 2009 AAD National Melanoma/Skin Cancer Screening Program participants.// J Eur Acad Dermatol Venerol.
- 70. Lin, M. H., Chang, K. W., Lin, S. C., & Miner, J. H. (2010). Epidermal hyperproliferation in mice lacking fatty acid transport protein 4 (FATP4) involves

ectopic EGF receptor and *STAT3* signaling. Developmental biology, 344(2), 707-719.

- 71. Lindsay MA. MicroRNAs and the immune response.// Trends Immunol 2008; 29 : 343–351.
- 72. Liu, Z. P., Wang, Y., Zhang, X. S., & Chen, L. N. (2012). Network-based analysis of complex diseases. IET Systems Biology, 6(1), 22-33.
- 73. Lowes MA, Bowcock AM, Krueger JG Pathogenesis and therapy of psoriasis// Nature. 2007. V. 445. № 7130. P. 866-73.
- 74. Lucas, A., Yaron, J. R., Zhang, L., & Ambadapadi, S. (2018). Overview of Serpins and Their Roles in Biological Systems. In Serpins (pp. 1-7). Humana Press, New York, NY.
- 75. Lv, Y., Sui, F., Ma, J., Ren, X., Yang, Q., Zhang, Y., ... & Ji, M. (2016). Increased expression of EHF contributes to thyroid tumorigenesis through transcriptionally regulating HER2 and HER3. Oncotarget, 7(36), 57978.
- 76. M. Enamandram and A. B. Kimball Psoriasis Epidemiology: The Interplay of Genes and the Environment Journal of Investigative Dermatology (2013)// 133, 287–289; doi:10.1038/jid.2012.434
- 77. McLaughlin F, La Thangue NB. Histone deacetylase inhibitors in psoriasis therapy.// Curr Drug Targets Inflamm Allergy 2004; 3: 213–219.
- Medina PP, Slack FJ. MicroRNAs and cancer: an overview.// Cell Cycle 2008; 7: 2485–2492.
- Meisgen, F., Xu, N., Wei, T., Janson, P. C., Obad, S., Broom, O., ... & Pivarcsi, A. (2012). MiR- 21 is up- regulated in psoriasis and suppresses T cell apoptosis. Experimental dermatology, 21(4), 312-314.
- 80. Meng, S., Sun, L., Wang, L., Lin, Z., Liu, Z., Xi, L., ... & Zheng, Y. (2019). Loading of Water-insoluble Celastrol into Niosome Hydrogels for Improved Topical Permeation and Anti-psoriasis Activity. *Colloids and Surfaces B: Biointerfaces*, 110352.
- 81. Menter M. A., Griffiths C. E. Psoriasis: The Future // Dermatol Clin. 2015. T.
 33, № 1. C. 161-166.
- 82. Mester, J., & Eng, C. (2015). Cowden syndrome: Recognizing and managing a not- so- rare hereditary cancer syndrome. Journal of surgical oncology, 111(1), 125-130.
- 83. Michael W. Pfaffl, Ales Tichopad, Christian Prgomet, Tanja P. Neuvian. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper – Excel-based tool usingpair-wise correlations// Biotechnology Letters 26: 509–515, 2004.
- 84. Nair R. P., Duffin K. C., Helms C., Ding J., Stuart P. E., Goldgar D., Gudjonsson J. E., Li Y., Tejasvi T., Feng B. J., Ruether A., Schreiber S., Weichenthal M., Gladman D., Rahman P., Schrodi S. J., Prahalad S., Guthery S. L., Fischer J., Liao W., Kwok P. Y., Menter A., Lathrop G. M., Wise C. A., Begovich A. B., Voorhees J. J., Elder J. T., Krueger G. G., Bowcock A. M., Abecasis G. R. Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways // Nat Genet. 2009. T. 41, № 2. C. 199-204.
- 85. Nair, R. P., Stuart, P. E., Nistor, I., Hiremagalore, R., Chia, N. V., Jenisch, S., ... & Voorhees, J. J. (2006). Sequence and haplotype analysis supports HLA-C as the psoriasis susceptibility 1 gene. The American Journal of Human Genetics, 78(5), 827-851.
- 86. Nestle Frank O., M.D., Daniel H. Kaplan, M.D., Ph.D., and Jonathan Barker, M.D.// N Engl J Med 2009;361:496-509.
- 87. Nguyen, U. S. D., Zhang, Y., Lu, N., Louie-Gao, Q., Niu, J., Ogdie, A., ... & Karlson, E. W. (2018). Smoking paradox in the development of psoriatic arthritis among patients with psoriasis: a population-based study. Annals of the rheumatic diseases, 77(1), 119-123.
- 88. Oka A, Mabuchi T, Ozawa A., Inoko H. Current understanding of human genetics and genetic analysis of psoriasis.// J Dermatol (2012) 39:231–241
- 89. Ortonne J. P. Recent developments in the understanding of the pathogenesis of psoriasis.// Br J Dermatol. (1999)- V.140 Suppl 54.- P.1-7.
- 90. P. Zhang, M. Zhao, G. Liang, Gu. Yin, D. Huang, F. Su, H. Zhai, L. Wang, Y. Su, Qianjin Lu, Whole-genome DNA methylation in skin lesions from patients with

psoriasis vulgaris// Journal of Autoimmunity (2013), http://dx.doi.org/10.1016/j.jaut.2013.01.001

- 91. P. Zhang, Y.Su, Q. Lu. Epigenetics and psoriasis// Journal of the European Academy of Dermatology and Venereology 2011, 26, 399-403.
- 92. Paneni F., Osto E., Costantino S., Mateescu B., Briand S., Coppolino G., Perna E., Mocharla P., Akhmedov A., Kubant R., Rohrer L., Malinski T., Camici G. G., Matter C. M., Mechta-Grigoriou F., Volpe M., Luscher T. F., Cosentino F. Deletion of the AP-1 Transcription Factor JunD Induces Oxidative Stress and Accelerates Age-Related Endothelial Dysfunction // Circulation. – 2013.CIRCULATIONAHA.112.000826 [pii] 10.1161/CIRCULATIONAHA.112.000826.
- 93. Parisi R, Symmons D, Griffiths C et al Global epidemiology of psoriasis: a systematic review of incidence and prevalence.// J Invest Dermatol (2012) 133:377–85
- 94. Patrick, M. T., Stuart, P. E., Raja, K., Gudjonsson, J. E., Tejasvi, T., Yang, J., ... & Enerbäck, C. (2018). Genetic signature to provide robust risk assessment of psoriatic arthritis development in psoriasis patients. Nature communications, 9(1), 4178.
- 95. Pawlak, A., Ziolo, E., Fiedorowicz, A., Fidyt, K., Strzadala, L., & Kalas, W. (2016). Long-lasting reduction in clonogenic potential of colorectal cancer cells by sequential treatments with 5-azanucleosides and topoisomerase inhibitors. BMC cancer, 16(1), 893.
- 96. Prinz JC. The role of T cells in psoriasis.// J Eur Acad Dermatol Venereol 2003; 17: 257–270.
- 97. Ray N., Kuwahara M., Takada Y., Maruyama K., Kawaguchi T., Tsubone H., Ishikawa H., Matsuo K. c-Fos suppresses systemic inflammatory response to endotoxin // Int Immunol. – 2006. – T. 18, № 5. – C. 671-7.
- 98. Ripka, S., Neesse, A., Riedel, J., Bug, E., Aigner, A., Poulsom, R., ... & Gress, T. M. (2010). CUX1: target of Akt signalling and mediator of resistance to apoptosis in pancreatic cancer. Gut, 59(8), 1101-1110.

- 99. Robertson KD. DNA methylation and human disease. Nat Rev Genet 2005; 6 : 597–610.
- 100. Rocha-Pereira P, Santos-Silva A, Rebelo I, Figneiredo A, Quintanilha A, Teixeira F. Erythrocyte damage in mild and severe psoriasis. Br J Der-matol 2004; 150: 232–244.
- 101. Rotondo, J. C., Borghi, A., Selvatici, R., Magri, E., Bianchini, E., Montinari, E., ... & Martini, F. (2016). Hypermethylation-induced inactivation of the IRF6 gene as a possible early event in progression of vulvar squamous cell carcinoma associated with lichen sclerosus. JAMA dermatology, 152(8), 928-933.
- 102. Ryan C., Kirby B. Psoriasis Is a Systemic Disease with Multiple Cardiovascular and Metabolic Comorbidities // Dermatol Clin. – 2015. – T. 33, № 1. – C. 41-55.
- 103. Ryan, C., Calimlim, B., Lucas, J., Skup, M., & Lobosco, S. (2018, September). Assessing the impact of patient support programs on patient outcomes in adalimumab-treated patients with psoriasis in Europe. In JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY (Vol. 79, No. 3, pp. AB49-AB49). 360 PARK AVENUE SOUTH, NEW YORK, NY 10010-1710 USA: MOSBY-ELSEVIER.
- 104. Schon M, Denzer D, Kubitza RC, Ruzicka T, Schon MP. Critical role of neutrophils for the generation of psoriasiform skin lesions in flaky skin mice. J Invest Dermatol 2000; 114: 976–983.
- Sérézal, I. G., Classon, C., Cheuk, S., Barrientos-Somarribas, M., Wadman, E., Martini, E., ... & Eidsmo, L. (2018). Resident T Cells in Resolved Psoriasis Steer Tissue Responses that Stratify Clinical Outcome. Journal of Investigative Dermatology.
- Sevimoglu, T., Turanli, B., Bereketoglu, C., Arga, K. Y., & Karadag, A. S. (2018). Systems biomarkers in psoriasis: Integrative evaluation of computational and experimental data at transcript and protein levels. Gene, 647, 157-163.

- Sevimoglu, T., Turanli, B., Bereketoglu, C., Arga, K. Y., & Karadag, A. S. (2018). Systems biomarkers in psoriasis: Integrative evaluation of computational and experimental data at transcript and protein levels. Gene, 647, 157-163.
- 108. Shih, C. M., Huang, C. Y., Wang, K. H., Huang, C. Y., Wei, P. L., Chang, Y. J., ... & Lee, A. W. (2018). Oxidized Low-Density Lipoprotein-Deteriorated Psoriasis Is Associated with the Upregulation of Lox-1 Receptor and Il-23 Expression In Vivo and In Vitro. International journal of molecular sciences, 19(9), 2610.
- Shih, C. M., Huang, C. Y., Wang, K. H., Huang, C. Y., Wei, P. L., Chang,
 Y. J., ... & Lee, A. W. (2018). Oxidized low-density lipoprotein-deteriorated psoriasis is associated with the upregulation of Lox-1 receptor and II-23 expression in vivo and in vitro. International journal of molecular sciences, 19(9), 2610.
- 110. Smyth, D. J., Howson, J. M., Payne, F., Maier, L. M., Bailey, R., Holland, K., ... & Dahlman, I. (2006). Analysis of polymorphisms in 16 genes in type 1 diabetes that have been associated with other immune-mediated diseases. BMC medical genetics, 7(1), 20.
- Sun L. D., Cheng H., Wang Z. X., Zhang A. P., Wang P. G., Xu J. H., Zhu Q. X., Zhou H. S., Ellinghaus E., Zhang F. R., Pu X. M., Yang X. Q., Zhang J. Z., Xu A. E., Wu R. N., Xu L. M., Peng L., Helms C. A., Ren Y. Q., Zhang C., Zhang S. M., Nair R. P., Wang H. Y., Lin G. S., Stuart P. E., Fan X., Chen G., Tejasvi T., Li P., Zhu J., Li Z. M., Ge H. M., Weichenthal M., Ye W. Z., Shen S. K., Yang B. Q., Sun Y. Y., Li S. S., Lin Y., Jiang J. H., Li C. T., Chen R. X., Cheng J., Jiang X., Zhang P., Song W. M., Tang J., Zhang H. Q., Sun L., Cui J., Zhang L. J., Tang B., Huang F., Qin Q., Pei X. P., Zhou A. M., Shao L. M., Liu J. L., Zhang F. Y., Du W. D., Franke A., Bowcock A. M., Elder J. T., Liu J. J., Yang S., Zhang X. J. Association analyses identify six new psoriasis susceptibility loci in the Chinese population // Nat Genet. 2010. T. 42, № 11. C. 1005-9.
- 112. Supek, F., Bošn*JAK*, M., Škunca, N., & Šmuc, T. (2011). REVIGO summarizes and visualizes long lists of gene ontology terms. *PloS one*, 6(7), e21800.

- 113. Swindell W. R., Xing X., Voorhees J. J., Elder J. T., Johnston A., Gudjonsson J. E. Integrative RNA-seq and microarray data analysis reveals GC content and gene length biases in the psoriasis transcriptome // Physiol Genomics. - 2014. – T. 46, № 15. – C. 533-46.
- 114. Swindell, W. R., Sarkar, M. K., Stuart, P. E., Voorhees, J. J., Elder, J. T., Johnston, A., & Gudjonsson, J. E. (2015). Psoriasis drug development and GWAS interpretation through in silico analysis of transcription factor binding sites. Clinical and translational medicine, 4(1), 13.
- Swindell, W. R., Xing, X., Voorhees, J. J., Elder, J. T., Johnston, A., & Gudjonsson, J. E. (2014). Integrative RNA-seq and microarray data analysis reveals GC content and gene length biases in the psoriasis transcriptome. Physiological genomics, 46(15), 533-546.
- Tian, S., Krueger, J. G., Li, K., Jabbari, A., Brodmerkel, C., Lowes, M. A., & Suárez-Fariñas, M. (2012). Meta-analysis derived (MAD) transcriptome of psoriasis defines the "core" pathogenesis of disease. *PloS one*, 7(9), e44274.
- Tian, Z., Huang, Y., Yue, T., Zhou, J., Tao, L., Han, L., ... & Shao, C. (2018). A Chinese cross-sectional study on depression and anxiety symptoms in patients with psoriasis vulgaris. Psychology, health & medicine, 1-12.
- 118. Tovar-Castillo LE, Cancino-Di' az JC, Garci'a-Va' zquez F et al., Under-expression of VHL and overexpression of HDAC-1, HIF- 1alpha, LL-37, and IAP-2 in affected skin biopsies of patients with psoriasis.Int J Dermatol 2007; 46 : 239–246.
- 119. Trimarchi JM, Lees JA. Sibling rivalry in the E2F family. Nat Rev MolCell Biol 2002; 3: 11–20.
- 120. Uluckan, O., & Wagner, E. F. (2016). Role of *IL-17A* signalling in psoriasis and associated bone loss. *Clin Exp Rheumatol*, *34*(4 Suppl 98), 17-20.
- Vegfors, J., Ekman, A. K., Stoll, S. W., Bivik Eding, C., & Enerbäck, C. (2016). Psoriasin (S100A7) promotes stress- induced angiogenesis. British Journal of Dermatology, 175(6), 1263-1273.

- 122. Walter, S. A., Cutler, R. E., Martinez, R., Gishizky, M., & Hill, R. J. (2003). Stk10, a new member of the polo-like kinase kinase family highly expressed in hematopoietic tissue. Journal of Biological Chemistry, 278(20), 18221-18228.
- 123. Wang, R., Yang, S., Nie, T., Zhu, G., Feng, D., & Yang, Q. (2017). Transcription factors: potential cell death markers in Parkinson's disease. Neuroscience bulletin, 33(5), 552-560.
- 124. Wang, Y., Mao, Y., Zhang, J., Shi, G., Cheng, L., Lin, Y., ... & Deng, J. (2018). IL- 35 recombinant protein reverses inflammatory bowel disease and psoriasis through regulation of inflammatory cytokines and immune cells. Journal of cellular and molecular medicine, 22(2), 1014-1025.
- 125. Wawrzycki, B., Pietrzak, A., Grywalska, E., Krasowska, D., Chodorowska, G., & Roliński, J. (2018). Interleukin-22 and Its Correlation with Disease Activity in Plaque Psoriasis. Archivum Immunologiae et Therapiae Experimentalis, 1-6.
- Wawrzycki, B., Pietrzak, A., Grywalska, E., Krasowska, D., Chodorowska, G., & Roliński, J. (2018). Interleukin-22 and Its Correlation with Disease Activity in Plaque Psoriasis. Archivum immunologiae et therapiae experimentalis, 1-6.
- 127. Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pat tern formation in C. elegans . Cell 1993; 75 : 855–862.
- 128. Wu L, Timmers C, Maiti B et al., The E2F1-3 trans cription factors are essential for cellular proliferation. Nature 2001; 414 : 457–462.
- 129. Xiao C, Raj ewsky K. MicroRNA control in the immune system : basic principles . Cell 2009; 136 : 26–36.
- Yin, X., Low, H. Q., Wang, L., Li, Y., Ellinghaus, E., Han, J., ... & Zhu, C. (2015). Genome-wide meta-analysis identifies multiple novel associations and ethnic heterogeneity of psoriasis susceptibility. Nature communications, 6, 6916.
- 131. Zanetti, M. (2004). Cathelicidins, multifunctional peptides of the innate immunity. Journal of leukocyte biology, 75(1), 39-48.

- 132. Zarrabeitia MT, Far inas MC, Rodri guez-Valverde V, Riancho JA, Llaca HF. T and B cell function in psoriasis and psoriatic arthropathy. Aller-gol Immunopathol (Madr) 1989; 17 : 155–159.
- 133. Zeng, X., Zhao, J., Wu, X., Shi, H., Liu, W., Cui, B., ... & Song, P. (2016). PageRank analysis reveals topologically expressed genes correspond to psoriasis and their functions are associated with apoptosis resistance. Molecular medicine reports, 13(5), 3969-3976.
- 134. Zhang C. MicroRNAs: role in cardiovascular biology and disease. Clin Sci (Lond) 2008; 114 : 699–706.
- 135. Zhang K, Zhang R, Li X, Yin G, Niu X. Promoter methylation status of p15 and p21 genes in HPP-CFCs of bone marrow of patients with psoriasis . Eur J Dermatol 2009; 19: 141–146.
- I36. Zhang P, Su Y, Chen H, Zhao M, Lu Q. Abnormal DNA methylation in skin lesions and PBMCs of patients with psoriasis vulgaris. J Dermatol Sci 2010; 60 : 40–42.
- 137. Zhang, Y., Tu, C., Zhang, D., Zheng, Y., Peng, Z., Feng, Y., ... & Li, Z. (2015). Wnt/β-catenin and Wnt5a/Ca2+ pathways regulate proliferation and apoptosis of keratinocytes in psoriasis lesions. Cellular physiology and biochemistry, 36(5), 1890-1902.
- 138. Zhou, F., Shen, C., Xu, J., Gao, J., Zheng, X., Ko, R., ... & Tang, X. (2016). Epigenome-wide association data implicates DNA methylation-mediated genetic risk in psoriasis. Clinical epigenetics, 8(1), 131.
- 139. Zhou, F., Shen, C., Xu, J., Gao, J., Zheng, X., Ko, R., ... & Tang, X. (2016). Epigenome-wide association data implicates DNA methylation-mediated genetic risk in psoriasis. Clinical epigenetics, 8(1), 131.
- Zhou, K. R., Liu, S., Sun, W. J., Zheng, L. L., Zhou, H., Yang, J. H., & Qu, L. H. (2016). ChIPBase v2. 0: decoding transcriptional regulatory networks of non-coding RNAs and protein-coding genes from ChIP-seq data. Nucleic acids research, gkw965.

- I41. Zhou, K. R., Liu, S., Sun, W. J., Zheng, L. L., Zhou, H., Yang, J. H., & Qu, L. H. (2016). ChIPBase v2. 0: decoding transcriptional regulatory networks of non-coding RNAs and protein-coding genes from ChIP-seq data. Nucleic acids research, gkw965.
- 142. Zhou, L., Du, G. S., Pan, L. C., Zheng, Y. G., Liu, Z. J., Shi, H. D., ... & Zhu, Z. D. (2017). Sirolimus treatment for cirrhosis or hepatocellular carcinoma patients accompanied by psoriasis after liver transplantation: A single center experience. Oncology letters, 14(6), 7817-7824.

ПРИЛОЖЕНИЕ

Приложение таблица 1. Список экспериментов анализа транскриптомов, вошедших в исследование.												
Номер в базе данных GEO Datasets	Количество образцов	H	LS	NL	Платформа	Вошли в анализ?	Пометка					
GSE109182	3	3			Illumina Genome Analyzer IIx	Да						
GSE107871	12	4	4	4	Illumina Genome Analyzer IIx	Нет	Клеточная культура					
GSE83645	25		20	5	Illumina Genome Analyzer IIx	Да						
GSE84204	9	9			Illumina HiSeq 2500	Да						
GSE78023	28		14	14	AB SOLiD 4 System	Нет	Платформа не HiSeq или GA					
GSE89725	6		6		Illumina HiSeq 4000	Да						
GSE92472	2	1	1		Illumina HiSeq 3000	Да						
GSE74697	34	16	18		Illumina HiSeq 2500	Да						
GSE54456	174	82	92		Illumina Genome Analyzer	Да						
GSE50598	3		2	1	Illumina HiSeq 2000	Да						
GSE67785	28		14	14	Illumina Genome Analyzer IIx	Да						
GSE66511	36	12	12	12	AB 5500xl Genetic Analyzer	Нет	Платформа не HiSeq или GA					
GSE63980	42	8	7	27	Illumina Genome Analyzer	Да						
GSE47944	84	20	64		Illumina HiSeq 2000	Да						
GSE41745	6		3	3	Illumina Genome Analyzer IIx	Да						
Всего	492	155	257									
Всего вошло в анализ	416	139	227									

Приложение таблица 2. Список экспериментов анализа метилирования ДНК вошедших в исследование.												
Номер в базе данных GEO Datasets	Количество образцов	Н	LS	Примечание								
Наши данные	27	9	18									
G8E63315	24	12	12	Всего в исследование вошло 47 образцов, в т.ч. 12 здоровых образцов, 12 образцов поражённой кожи и 23 образца поражённой кожи на разных стадиях терапии ультрафиолетом. Образцы кожи после терапии ультрафиолетом не вошли в анализ.								
GSE73894	217	62	135									
GSE115797	48		24									
Всего	316	83	189									

Приложение таблица 3. Список дифференциально экспрессированных генов. Положительные значения Log Fold-Change обозначают											
повышенный урове	нь экспр	ессии в по	ражённой псо	риазом кожи,	a o	трицательные- пониже	енный.				
Ген	logFC	logCPM	PValue	FDR		Ген	logFC	logCPM	PValue	FDR	
A2ML1	2.251	8.883	2.00E-89	7.00E-87		KRT4	-2.642	1.932	5.00E-33	3.00E-31	
AADACL3	-4.16	5.43	2.00E-31	8.00E-30		KRT6A	3.172	13.075	8.00E-54	1.00E-51	
AASS	1.762	4.559	1.00E-104	9.00E-102		KRT6B	2.085	10.966	3.00E-29	1.00E-27	
ABCG4	3.789	3.079	3.00E-117	3.00E-114		KRT6C	3.811	9.786	2.00E-33	1.00E-31	
ACADL	-1.72	2.018	1.00E-35	8.00E-34		KRT77	-3.556	7.932	6.00E-123	6.00E-120	
ACKR2	2.226	3.795	3.00E-66	6.00E-64		KRT79	-2.835	7.523	4.00E-34	2.00E-32	
ACOT1	-2.35	2.895	1.00E-36	7.00E-35		KRT8P9	2.401	2.245	2.00E-19	4.00E-18	
ACOX2	-1.72	3.432	3.00E-41	3.00E-39		KRTAP9-8	-1.548	2.357	3.00E-08	3.00E-07	
ACP7	3.453	6.7	1.00E-115	9.00E-113		KYNU	4.572	5.217	4.00E-265	2.00E-260	
ACRV1	1.627	1.315	4.00E-11	5.00E-10		LAG3	1.538	2.005	1.00E-24	5.00E-23	
ACSBG1	-2.91	5.57	1.00E-40	8.00E-39		LAMP3	2.24	5.55	1.00E-86	4.00E-84	
ACSM3	-1.7	2.798	3.00E-23	1.00E-21		LBP	1.734	1.334	9.00E-12	1.00E-10	
ACSM6	-2.54	1.96	1.00E-23	3.00E-22		LCE3A	7.525	6.031	2.00E-146	3.00E-143	
ACTA1	-2.31	3.969	2.00E-36	1.00E-34		LCE3B	3.313	1.411	6.00E-21	2.00E-19	
ACTC1	-2.46	4.051	4.00E-35	2.00E-33		LCE3C	3.968	3.892	3.00E-15	5.00E-14	
ACTG2	-1.92	6.811	1.00E-27	6.00E-26		LCE3D	3.939	8.523	3.00E-67	7.00E-65	
ADAM23	2.004	3.715	1.00E-78	4.00E-76		LCE3E	4.09	7.017	4.00E-73	1.00E-70	
ADAMDEC1	4.272	3.622	6.00E-127	7.00E-124		LCE5A	-2.373	5.485	2.00E-43	2.00E-41	
ADAMTS16	-1.76	1.612	2.00E-15	4.00E-14		LCN2	4.289	7.205	9.00E-112	6.00E-109	
ADAMTS4	2.191	3.143	4.00E-52	5.00E-50		LEPR	-1.636	5.835	6.00E-35	4.00E-33	
ADAMTSL3	-1.94	3.182	3.00E-67	6.00E-65		LGALS9B	2.107	1.408	1.00E-18	3.00E-17	
ADAP2	1.902	5.236	7.00E-84	3.00E-81		LGALS9C	1.736	1.235	3.00E-10	3.00E-09	
ADCY8	-1.77	2.576	5.00E-23	1.00E-21		LGI3	-1.53	4.097	1.00E-32	7.00E-31	
ADCYAP1	2.483	1.879	2.00E-20	5.00E-19		LIF	-1.573	3.039	1.00E-49	1.00E-47	
ADGRB1	-1.51	2.806	2.00E-33	1.00E-31		LINC01272	1.935	1.974	9.00E-36	6.00E-34	
ADGRF1	2.074	2.588	7.00E-16	1.00E-14		LINGO2	-1.734	1.298	2.00E-12	3.00E-11	
ADH1B	-1.52	6.992	2.00E-17	4.00E-16		LINGO4	-1.946	1.419	8.00E-19	2.00E-17	
ADH7	2.966	2.459	1.00E-58	2.00E-56		LOR	-1.74	9.915	1.00E-20	2.00E-19	
ADORA2BP	-1.61	1.185	3.00E-09	4.00E-08		LRG1	2.196	5.249	9.00E-48	9.00E-46	
ADRA1A	-2.01	2.235	5.00E-50	5.00E-48		LRIT2	-1.722	1.918	4.00E-31	2.00E-29	
AGR3	-3.08	1.386	4.00E-32	2.00E-30		LRRC55	3.541	2.978	1.00E-102	6.00E-100	
AGT	-1.62	2.574	4.00E-18	8.00E-17		LTB4R	1.515	6.26	1.00E-65	2.00E-63	
AIM2	2.578	1.899	5.00E-48	5.00E-46		LTF	5.872	7.305	4.00E-102	2.00E-99	
AKR1B10	6.094	6.431	7.00E-236	2.00E-231		LUZP2	2.488	2.325	6.00E-54	8.00E-52	

AKR1B15	4.556	2.786	5.00E-119	4.00E-116	LYPD1	2.584	1.497	4.00E-26	1.00E-24
AL591704.7	3.352	1.519	5.00E-42	4.00E-40	MACROD2	-1.897	3.042	3.00E-74	9.00E-72
ALDH1A2	-1.51	3.026	5.00E-45	5.00E-43	MAP6	-1.546	2.952	7.00E-57	1.00E-54
ALDH1L1	-2.16	2.844	7.00E-33	3.00E-31	MAPK4	-1.668	2.004	2.00E-33	1.00E-31
ALOX12B	2.097	7.5	1.00E-49	1.00E-47	MAST1	-1.648	2.193	6.00E-37	4.00E-35
ALOX15B	-1.53	6.947	1.00E-20	4.00E-19	MAT1A	-1.537	2.365	3.00E-20	8.00E-19
ANGPTL4	1.566	4.984	2.00E-33	1.00E-31	MATN4	-1.927	4.184	2.00E-26	8.00E-25
ANKFN1	-1.89	2.565	3.00E-70	7.00E-68	MEFV	2.23	1.979	3.00E-38	2.00E-36
ANKRD31	2.13	1.767	2.00E-30	7.00E-29	MESP2	1.593	1.415	2.00E-12	2.00E-11
ANKRD33B	-2.59	5.208	4.00E-147	9.00E-144	METTL7B	-2.219	1.686	3.00E-20	7.00E-19
AP000439.3	-2.89	2.112	5.00E-72	1.00E-69	MFSD2B	3.633	2.005	6.00E-80	2.00E-77
AP000640.9	3.351	5.737	2.00E-53	2.00E-51	MIAT	1.608	2.654	5.00E-30	2.00E-28
AP001046.6	-1.65	1.179	2.00E-09	2.00E-08	MIR3142HG	1.687	1.922	2.00E-27	7.00E-26
APOBEC3A	3.2	1.612	5.00E-34	3.00E-32	MLC1	-1.543	1.805	8.00E-23	2.00E-21
APOC1	-1.95	3.057	5.00E-31	2.00E-29	MMP1	1.76	2.845	3.00E-09	3.00E-08
APOL1	2.521	6.16	5.00E-66	1.00E-63	MMP12	4.368	2.804	7.00E-84	3.00E-81
APOL6	2.011	6.566	2.00E-109	1.00E-106	ММР9	1.755	4.621	1.00E-37	6.00E-36
AQP4	-1.85	1.288	2.00E-13	2.00E-12	MOGAT1	-2.168	1.349	3.00E-18	7.00E-17
AQP9	-2.25	4.577	7.00E-107	4.00E-104	MOGAT2	-2.887	2.829	3.00E-34	1.00E-32
ARFGEF3	-1.58	4.42	1.00E-42	9.00E-41	MPHOSPH6	1.807	5.353	5.00E-80	2.00E-77
ARG1	2.364	7.884	2.00E-59	3.00E-57	MPZL2	2.228	7.143	9.00E-129	1.00E-125
ARNTL2	1.789	6.325	9.00E-91	4.00E-88	MSMB	-3.182	2.828	3.00E-70	6.00E-68
ARSF	3.572	4.601	1.00E-124	1.00E-121	MT4	-2.663	2.448	2.00E-29	8.00E-28
ASPG	1.764	4.022	2.00E-38	1.00E-36	MTRNR2L1	2.451	3.359	3.00E-07	3.00E-06
ASTNI	-1.52	1.957	3.00E-15	5.00E-14	MTRNR2L12	3.033	4.249	2.00E-10	2.00E-09
ATOH8	-1.6	3.902	8.00E-38	5.00E-36	MUCI	-2.423	4.065	9.00E-40	7.00E-38
ATPIOB	1.762	5.803	4.00E-62	7.00E-60	MUC16	-2.061	1.653	8.00E-23	2.00E-21
ATPIZA	3.603	7.419	9.00E-76	3.00E-73		3.185	1.485	2.00E-25	6.00E-24
ATPIA2	-1.68	3.938	7.00E-51	8.00E-49	MUC7	-2.89	2.658	3.00E-36	2.00E-34
AIP2B2	-1.6	1.83	7.00E-25	2.00E-23		2.927	7.256	1.00E-75	3.00E-73
AWAII	-2.23	5.032	9.00E-15	2.00E-13		1.081	5.5	2.00E-32	9.00E-31
AWA12 DACALNT2	-3.37	5.047	2.00E-24	7.00E-23		1.804	0.048	4.00E-96	2.00E-93
B4GALN12	1.//1	3.029	2.00E-35	1.00E-33	MIEOV	-2.005	2.790	2.00E-58	4.00E-36
	2.843	2.301	7.00E-36	1.00E-53		-1./48	1.24	1.00E-25	4.00E-24
DUL2AI REST2	2.35	1.502	2.00E-30	2.00E-48		2.038	7 725	0.00E-14	1.00E-12
DESI2 DMD2	-2.21	1.503	2.00E-20	9.00E-25		-2.101	1.155	3.00E-33	4.00E-33
DIVITS	-1.33	1.038	/.UUE-18	1.00E-10	MIH3	-2.121	3.371	0.00E-39	0.00E-3/

BMPER	1.791	1.947	6.00E-21	2.00E-19	МҮО1Н	1.572	1.399	7.00E-12	1.00E-10
BRINP1	1.965	1.705	3.00E-22	1.00E-20	МҮОЗА	-1.892	1.48	2.00E-20	5.00E-19
BTBD16	-1.95	2.384	2.00E-58	3.00E-56	МҮОС	-2.127	3.002	3.00E-45	3.00E-43
BTC	-3.97	3.902	1.00E-174	9.00E-171	MYOM2	-1.559	2.354	2.00E-33	1.00E-31
C10orf99	5.128	6.437	2.00E-164	7.00E-161	NAMPT	2.216	7.096	6.00E-126	7.00E-123
C12orf56	2.024	2.378	7.00E-51	8.00E-49	NAMPTL	2.328	5.658	7.00E-120	6.00E-117
C12orf74	2.029	1.181	5.00E-13	8.00E-12	NCAM1	-1.52	3.296	2.00E-50	2.00E-48
C14orf132	-1.69	6.373	2.00E-43	2.00E-41	NELL1	-2.146	1.503	4.00E-18	9.00E-17
C14orf64	-1.51	2.955	2.00E-59	3.00E-57	NETO1	-1.603	1.423	2.00E-11	2.00E-10
C15orf48	1.616	4.054	2.00E-31	8.00E-30	NEU2	2.231	3.219	4.00E-49	5.00E-47
C15orf59	-1.56	3.594	8.00E-49	9.00E-47	NEUROD2	-1.858	1.189	1.00E-11	1.00E-10
Clorf158	-2	1.21	3.00E-13	5.00E-12	NFKBIZ	2.148	6.922	2.00E-117	1.00E-114
Clorf95	-1.77	3.912	6.00E-64	1.00E-61	NMI	1.652	4.689	6.00E-93	3.00E-90
C1QL2	-1.55	1.183	2.00E-08	2.00E-07	NOD2	1.759	5.156	3.00E-80	8.00E-78
C1QTNF7	-1.71	3.832	2.00E-38	1.00E-36	NOS2	5.28	4.132	6.00E-98	3.00E-95
C5orf46	-3.17	4.893	2.00E-127	2.00E-124	NPAS1	-1.868	2.209	7.00E-43	6.00E-41
C5orf49	-1.73	1.351	2.00E-13	3.00E-12	NPTX1	-2.75	2.637	2.00E-48	2.00E-46
C6orf223	1.505	1.309	1.00E-09	2.00E-08	NR1D1	-1.508	6.141	1.00E-29	5.00E-28
C9orf129	-1.96	1.615	1.00E-26	5.00E-25	NR4A3	2.19	2.871	7.00E-53	9.00E-51
C9orf152	-1.52	2.429	9.00E-28	4.00E-26	NRG3	-1.54	1.516	6.00E-15	1.00E-13
C9orf84	2.343	2.119	3.00E-41	3.00E-39	NT5C3A	1.925	5.805	5.00E-97	2.00E-94
САб	-1.67	5.186	2.00E-22	5.00E-21	NUP210	1.503	4.921	3.00E-44	3.00E-42
СА9	-1.92	2.061	7.00E-43	6.00E-41	NWD2	1.988	2.275	1.00E-30	5.00E-29
CACNA1H	-2.03	3.662	2.00E-47	2.00E-45	OAS1	2.466	5.686	1.00E-93	5.00E-91
CACNA2D2	-1.71	2.88	1.00E-71	3.00E-69	OAS2	3.687	6.61	5.00E-123	5.00E-120
CACNB4	1.973	4.232	5.00E-52	6.00E-50	OAS3	2.377	7.359	2.00E-93	1.00E-90
CACNG4	-1.54	1.512	7.00E-15	1.00E-13	OASL	3.634	5.117	3.00E-70	6.00E-68
CADM3	-1.64	4.891	9.00E-40	6.00E-38	ODF3L1	-2.032	1.522	8.00E-24	3.00E-22
CALML3	1.559	8.271	4.00E-31	2.00E-29	OLAH	-2.027	1.57	9.00E-20	2.00E-18
CAMK2B	-2.33	2.152	3.00E-61	5.00E-59	OLR1	1.676	1.226	1.00E-09	1.00E-08
CAMP	1.75	1.336	6.00E-13	9.00E-12	OSM	2.822	1.515	1.00E-23	3.00E-22
CAPN13	-2.05	1.514	4.00E-21	1.00E-19	OTOGL	-1.773	1.509	4.00E-17	7.00E-16
CARD17	1.606	1.933	4.00E-24	1.00E-22	OTOP2	1.631	1.502	2.00E-14	3.00E-13
CARD6	1.96	4.519	1.00E-95	6.00E-93	ОТОР3	2.102	2.29	3.00E-26	1.00E-24
CASP5	3.522	1.574	3.00E-46	3.00E-44	P2RX1	-1.625	3.73	1.00E-41	9.00E-40
CASQ2	-1.52	3.617	8.00E-33	4.00E-31	PAMR1	-1.75	5.361	4.00E-57	6.00E-55
CATSPERB	1.794	1.287	3.00E-12	4.00E-11	PARP14	1.725	6.331	1.00E-78	4.00E-76

CBLN1	-1.78	2.036	1.00E-27	5.00E-26	PARP9	2.129	6.455	2.00E-126	2.00E-123
CCDC60	1.977	1.274	3.00E-13	4.00E-12	РСК1	-1.586	1.891	3.00E-13	5.00E-12
CCER2	-2.38	2.101	4.00E-34	2.00E-32	PCP4	-1.589	3.391	2.00E-25	7.00E-24
CCKBR	-2.3	1.608	2.00E-31	1.00E-29	PCP4L1	1.855	4.244	6.00E-38	4.00E-36
CCL18	2.826	3.474	2.00E-35	9.00E-34	PCSK1	2.367	1.807	3.00E-28	1.00E-26
CCL2	1.737	4.454	2.00E-41	1.00E-39	PCSK1N	-1.771	2.803	9.00E-27	3.00E-25
CCL20	3.963	2.46	1.00E-75	3.00E-73	PDCD1	1.59	1.366	2.00E-11	2.00E-10
CCL22	2.002	5.216	7.00E-44	6.00E-42	PDE6A	-3.548	2.573	2.00E-37	1.00E-35
CCL3L3	1.539	1.144	3.00E-08	3.00E-07	PDZD7	-2.12	1.76	2.00E-36	1.00E-34
CCL4	1.788	1.318	4.00E-13	6.00E-12	PDZK1	-2.569	1.927	3.00E-31	2.00E-29
CCL4L2	1.795	1.221	2.00E-10	2.00E-09	PDZK1IP1	2.296	7.273	2.00E-50	2.00E-48
CCL7	2.013	1.205	3.00E-12	5.00E-11	PDZRN4	-1.743	2.504	1.00E-29	5.00E-28
CCL8	1.609	1.837	6.00E-20	1.00E-18	PEBP4	-1.719	1.588	3.00E-20	7.00E-19
CCNE1	1.905	3.507	1.00E-67	3.00E-65	PECR	-1.814	3.713	6.00E-46	6.00E-44
CCR7	2.574	3.338	4.00E-84	2.00E-81	PGBD5	1.895	4.06	2.00E-44	2.00E-42
CD177	2.997	2.283	3.00E-39	2.00E-37	PGLYRP2	2.244	1.644	5.00E-30	2.00E-28
CD2	1.614	3.623	5.00E-46	5.00E-44	PGLYRP4	1.564	4.915	3.00E-47	3.00E-45
CD24	2.166	8.002	5.00E-79	1.00E-76	PGM2	1.609	6.632	4.00E-167	2.00E-163
CD24L4	1.926	3.233	4.00E-43	4.00E-41	PHYHD1	-1.549	3.893	2.00E-127	3.00E-124
CD274	2.396	3.789	5.00E-50	6.00E-48	PHYHIP	-2.638	4.609	5.00E-97	3.00E-94
CD28	1.646	2.618	3.00E-45	3.00E-43	PI15	2.1	3.557	3.00E-39	2.00E-37
CD300E	1.833	2.635	3.00E-39	2.00E-37	PI3	6.691	10.659	9.00E-84	3.00E-81
CD36	1.596	7.009	1.00E-31	6.00E-30	PIP	-2.172	5.993	2.00E-18	5.00E-17
CD38	2.069	1.982	3.00E-41	2.00E-39	PITX1	2.938	3.881	9.00E-69	2.00E-66
<i>CD</i> 7	1.899	2.64	4.00E-38	3.00E-36	PLA2G2D	1.886	1.4	3.00E-13	4.00E-12
CD80	2.175	1.369	3.00E-18	7.00E-17	PLA2G2F	2.233	5.349	1.00E-53	1.00E-51
CDH12	-1.75	1.754	7.00E-27	3.00E-25	PLA2G3	1.941	5.321	2.00E-62	3.00E-60
CDH20	-1.88	1.602	4.00E-24	1.00E-22	PLA2G4D	4.276	7.911	3.00E-141	6.00E-138
CDH26	2.202	2.526	2.00E-63	3.00E-61	PLA2G4E	2.245	7.944	3.00E-78	1.00E-75
CDH4	-1.92	1.873	1.00E-29	6.00E-28	PLAC8	1.886	1.675	3.00E-23	9.00E-22
CDHR1	-1.67	8.073	4.00E-44	3.00E-42	PLAT	2.224	6.024	6.00E-52	8.00E-50
CDK5R1	1.726	3.915	6.00E-57	9.00E-55	PLBD1	2.05	6.901	1.00E-115	8.00E-113
CES1	-1.52	3.594	1.00E-34	6.00E-33	PLCXD1	1.546	5.388	3.00E-55	4.00E-53
CH17-335B8.6	-1.51	1.696	4.00E-19	9.00E-18	PLEKHG7	2.704	1.336	2.00E-23	5.00E-22
СНАС1	3.281	4.488	6.00E-48	6.00E-46	PLIN1	-1.627	4.712	3.00E-12	4.00E-11
CHAD	-2.37	2.691	7.00E-96	4.00E-93	PLIN4	-1.555	6.562	4.00E-14	7.00E-13
CHI3L2	4.141	6.501	5.00E-112	3.00E-109	PLLP	-1.65	5.061	8.00E-68	2.00E-65

CHP2	-2.09	6.359	1.00E-47	1.00E-45	PM20D1	-3.362	6.254	1.00E-22	4.00E-21
CHRM1	-1.81	2.396	2.00E-45	2.00E-43	РИСК	-1.863	1.743	7.00E-29	3.00E-27
CHRM4	-3.48	1.845	1.00E-67	3.00E-65	PNLDC1	-2.707	2.547	2.00E-28	7.00E-27
CHRNA2	-1.68	1.41	4.00E-13	6.00E-12	PNP	1.649	5.892	8.00E-55	1.00E-52
CHRNA9	2.644	3.052	6.00E-81	2.00E-78	PNPLA5	-2.92	2.824	4.00E-30	2.00E-28
CHST1	1.563	2.228	5.00E-29	2.00E-27	POLR3G	1.542	3.87	1.00E-20	3.00E-19
CIDEA	-1.78	4.565	8.00E-24	2.00E-22	PPP1R1A	-1.604	2.72	2.00E-19	5.00E-18
CIDEC	-1.63	3.319	1.00E-12	2.00E-11	PPP1R1B	-1.519	4.847	8.00E-18	2.00E-16
CILP	-1.69	6.908	3.00E-21	9.00E-20	PRB2	-2.049	1.258	8.00E-15	1.00E-13
CILP2	-3.33	3.091	6.00E-44	5.00E-42	PRDM1	1.678	6.548	9.00E-72	2.00E-69
СКМ	-2.12	1.66	7.00E-30	3.00E-28	PRKCQ	2.212	3.225	4.00E-74	1.00E-71
CKMT1B	1.663	4.692	8.00E-55	1.00E-52	PRNCR1	2.103	1.281	2.00E-08	2.00E-07
CLCA3P	2.251	1.265	7.00E-16	1.00E-14	PRR15L	-1.528	2.707	1.00E-29	5.00E-28
CLDN1	-1.52	8.522	8.00E-147	2.00E-143	PRR33	-1.835	2.974	4.00E-50	5.00E-48
CLDN17	2.822	2.713	3.00E-20	7.00E-19	PRSS22	3.268	3.954	2.00E-88	8.00E-86
CLDN23	-1.72	2.411	6.00E-49	6.00E-47	PRSS27	4.045	5.251	4.00E-113	3.00E-110
CLDN3	-1.5	1.87	2.00E-20	5.00E-19	PRSS53	3.365	4.125	6.00E-82	2.00E-79
CLDN8	-1.9	3.207	8.00E-55	1.00E-52	PSAPL1	-1.894	7.594	1.00E-30	7.00E-29
CLEC3A	6.072	2.78	1.00E-50	2.00E-48	PSCA	-1.856	2.114	1.00E-37	8.00E-36
CLEC4C	1.528	1.36	3.00E-10	3.00E-09	PTCHD1	-1.581	1.572	3.00E-17	5.00E-16
CLEC4D	1.542	1.156	5.00E-08	5.00E-07	RAB3B	-2.204	3.917	1.00E-46	1.00E-44
CLEC4E	1.826	1.49	1.00E-17	3.00E-16	RASGRP1	1.604	5.042	6.00E-50	7.00E-48
CLEC7A	2.475	4.627	4.00E-109	3.00E-106	RBP4	-1.548	3.127	8.00E-15	1.00E-13
CLLU1	1.777	1.188	1.00E-10	2.00E-09	RDH16	2.242	3.362	1.00E-87	5.00E-85
CLLU10S	2.002	1.225	2.00E-12	3.00E-11	REN	2.952	1.698	2.00E-34	1.00E-32
CMPK2	2.509	3.993	8.00E-57	1.00E-54	RGS1	3.232	2.796	1.00E-99	7.00E-97
CNDP1	-1.93	1.319	3.00E-15	4.00E-14	RGS9BP	-1.974	1.536	1.00E-21	3.00E-20
CNFN	2.784	9.226	6.00E-61	1.00E-58	RHCG	4.438	7.876	8.00E-94	3.00E-91
CNGA1	-1.59	2.581	6.00E-55	9.00E-53	RHOXF1-AS1	1.732	1.83	1.00E-22	4.00E-21
CNGB1	2.537	1.84	2.00E-38	1.00E-36	RIMS4	-1.799	2.107	1.00E-28	4.00E-27
CNN1	-1.78	6.057	2.00E-28	8.00E-27	RN7SL648P	2.709	1.438	1.00E-09	2.00E-08
CNTFR	-2.06	3.625	4.00E-60	7.00E-58	RND1	4.049	3.048	3.00E-89	1.00E-86
CNTN2	-1.79	2.413	2.00E-55	2.00E-53	RNF222	1.785	4.226	2.00E-52	3.00E-50
COBL	-1.51	5.684	1.00E-106	9.00E-104	RORC	-2.434	4.327	5.00E-95	2.00E-92
СОСН	-1.6	3.27	5.00E-23	1.00E-21	ROS1	-2.556	2.412	3.00E-24	1.00E-22
CPNE6	-1.61	1.371	8.00E-13	1.00E-11	RP11-1008C21.1	-2.756	1.701	1.00E-44	1.00E-42
CPNE9	-1.58	1.255	1.00E-09	1.00E-08	RP11-109J4.1	2.75	2.261	2.00E-67	3.00E-65

CRABP2	2.159	8.834	9.00E-58	1.00E-55	R	P11-118B18.3	-2.135	1.44	1.00E-20	3.00E-19
CRAT	-2.52	6.877	2.00E-41	1.00E-39	R	P11-1223D19.5	1.758	1.196	4.00E-10	5.00E-09
CRY2	-1.59	6.336	1.00E-71	3.00E-69	RI	P11-1223D19.6	1.769	1.197	4.00E-10	5.00E-09
CSMD1	-1.69	2.046	8.00E-31	4.00E-29	R	P11-1263C18.3	-2.132	2.161	1.00E-47	1.00E-45
CST6	-2.31	7.881	5.00E-48	6.00E-46	RI	P11-12G12.7	1.521	2.689	9.00E-51	1.00E-48
CSTA	1.679	9.132	3.00E-48	3.00E-46	R	P11-138A9.1	1.641	1.26	5.00E-06	4.00E-05
CTA-384D8.35	3.123	1.801	3.00E-53	4.00E-51	RI	P11-145E17.2	-1.586	1.419	4.00E-13	6.00E-12
CTA-384D8.36	1.797	2.824	6.00E-38	4.00E-36	R	P11-150012.1	1.718	2.934	7.00E-28	3.00E-26
CTA-398F10.2	-1.9	1.207	3.00E-12	4.00E-11	R	P11-187A9.2	1.653	1.418	1.00E-09	1.00E-08
CTB-147C22.6	1.65	1.169	2.00E-08	2.00E-07	R	P11-20B24.6	1.607	1.17	2.00E-05	1.00E-04
CTB-33018.1	1.914	1.226	2.00E-11	2.00E-10	R	P11-213H15.3	1.738	1.232	9.00E-11	1.00E-09
CTB-92J24.3	-2.02	1.252	6.00E-15	1.00E-13	R	P11-226E21.4	1.528	1.323	9.00E-07	7.00E-06
CTC-327F10.4	-2.29	1.828	4.00E-45	4.00E-43	RI	P11-229C3.2	1.691	1.478	4.00E-15	7.00E-14
CTC-327F10.5	-2.08	1.42	7.00E-21	2.00E-19	R	P11-243E13.1	-1.967	1.567	1.00E-24	4.00E-23
CTC-490G23.2	4.062	1.719	1.00E-50	1.00E-48	RI	P11-252C15.1	-1.63	1.229	4.00E-10	4.00E-09
CTC-518B2.8	3.578	5.074	1.00E-99	8.00E-97	R	P11-252C24.3	-2.325	1.236	5.00E-19	1.00E-17
CTC-529G1.1	1.579	1.194	2.00E-07	2.00E-06	R	P11-255H23.4	-2.487	2.205	1.00E-30	7.00E-29
CTD-2017D11.1	-1.79	2.387	2.00E-24	7.00E-23	R	P11-26L20.3	-2.503	1.441	3.00E-22	9.00E-21
CTD-2048F20.1	2.967	3.534	8.00E-28	3.00E-26	R	P11-277P12.20	1.805	2.428	1.00E-50	1.00E-48
CTD-2049J23.2	-2.46	1.359	5.00E-18	1.00E-16	R	P11-288L9.4	1.781	1.324	1.00E-12	2.00E-11
CTD-2195M18.1	-2.02	1.811	2.00E-27	7.00E-26	R	P11-290D2.6	1.718	1.508	4.00E-16	7.00E-15
CTD-2339M3.1	1.843	1.24	2.00E-07	2.00E-06	R	P11-295G20.2	2.663	5.652	4.00E-130	6.00E-127
CTD-2378H7.2	-1.85	5.606	2.00E-17	5.00E-16	R	P11-302J23.1	1.809	1.252	1.00E-11	2.00E-10
CTD-2382E5.1	1.712	2.766	2.00E-38	1.00E-36	R	P11-30P6.3	1.701	2.108	8.00E-10	9.00E-09
CTD-2547L24.4	2.173	1.367	3.00E-18	7.00E-17	R	P11-323N10.1	5.299	2.836	1.00E-144	2.00E-141
CTD-2555C10.3	2.04	1.411	3.00E-18	7.00E-17	R	P11-324D17.1	-2.932	1.494	1.00E-28	5.00E-27
CTD-2626G11.2	-2.41	1.746	7.00E-41	5.00E-39	RI	P11-345M22.1	-1.84	1.483	2.00E-18	5.00E-17
CTD-3088G3.8	-1.91	2.188	6.00E-47	6.00E-45	R	P11-350F16.1	-3.222	1.708	6.00E-32	3.00E-30
CTLA4	2.727	2.111	6.00E-63	1.00E-60	RI	P11-350J20.12	3.67	1.94	1.00E-63	2.00E-61
CUX2	-2.17	2.292	2.00E-28	8.00E-27	R	P11-372M18.2	-1.984	1.515	2.00E-19	4.00E-18
CXCL1	3.279	3.728	5.00E-30	2.00E-28	RI	P11-37016.8	2.099	1.199	6.00E-07	5.00E-06
CXCL10	3.693	3.384	1.00E-68	3.00E-66	R	P11-381L18.2	1.633	1.191	7.00E-09	7.00E-08
CXCL11	2.448	1.904	4.00E-30	2.00E-28	RI	P11-398B16.2	2.667	1.316	2.00E-23	6.00E-22
CXCL13	4.732	2.304	8.00E-71	2.00E-68	R	P11-399J13.2	1.551	2.01	7.00E-26	3.00E-24
CXCL17	2.661	1.623	1.00E-36	9.00E-35	RI	P11-416O18.1	3.184	1.435	3.00E-34	2.00E-32
CXCL2	2.689	1.844	7.00E-45	6.00E-43	R	P11-421E14.2	1.621	1.234	1.00E-05	7.00E-05
CXCL6	2.214	1.431	4.00E-17	8.00E-16	R	P11-430H10.2	1.876	1.184	1.00E-11	2.00E-10

CXCL8	5.947	4.65	4.00E-66	8.00E-64	RP11-442J17.4	-1.834	1.447	7.00E-18	2.00E-16
CXCL9	3.726	4.538	8.00E-67	2.00E-64	RP11-459E5.1	-1.746	3.486	1.00E-23	4.00E-22
CXCR2	2.7	4.346	4.00E-117	4.00E-114	RP11-497D6.4	1.749	2.267	9.00E-37	6.00E-35
CXCR4	1.915	4.254	5.00E-72	1.00E-69	RP11-505F3.4	1.703	1.22	7.00E-10	8.00E-09
CXCR6	2.677	2.598	2.00E-96	1.00E-93	RP11-517M22.1	-3.206	1.977	1.00E-30	5.00E-29
CYP1A1	-1.84	3.6	6.00E-11	7.00E-10	RP11-526F3.1	1.555	1.139	9.00E-08	8.00E-07
CYP1A2	-3.21	1.511	7.00E-28	3.00E-26	RP11-53I6.1	1.618	1.375	2.00E-07	2.00E-06
CYP24A1	2.417	2.412	1.00E-51	1.00E-49	RP11-53019.1	-1.849	1.732	2.00E-28	7.00E-27
CYP2W1	-4.16	2.608	1.00E-135	2.00E-132	RP11-546K22.1	-1.939	1.228	2.00E-13	3.00E-12
CYP3A4	-1.94	1.804	7.00E-27	3.00E-25	RP11-557H15.3	2.848	2	9.00E-61	2.00E-58
CYP4B1	-1.59	3.946	4.00E-33	2.00E-31	RP11-55K22.5	-1.68	1.204	5.00E-10	5.00E-09
CYP4F8	-2.56	3.053	1.00E-24	4.00E-23	RP11-561111.3	-1.546	1.199	2.00E-08	2.00E-07
DBX2	-2.14	1.4	7.00E-21	2.00E-19	RP11-599B13.9	2.396	4.205	9.00E-62	2.00E-59
DCC	-1.61	1.325	6.00E-12	7.00E-11	RP11-5N23.2	1.872	2.132	2.00E-36	9.00E-35
DCD	-1.92	9.992	7.00E-15	1.00E-13	RP11-622011.2	1.79	1.511	2.00E-17	4.00E-16
DDC	-2.75	1.359	6.00E-22	2.00E-20	RP11-64C12.1	-1.571	1.275	6.00E-10	6.00E-09
DDX25	-1.64	1.64	5.00E-20	1.00E-18	RP11-666F17.1	1.94	1.359	3.00E-07	2.00E-06
DDX58	1.629	5.545	7.00E-76	2.00E-73	RP11-679B19.1	-1.59	2.17	7.00E-34	4.00E-32
DDX60	1.607	6.065	1.00E-48	1.00E-46	RP11-680F20.6	-1.931	1.872	6.00E-30	3.00E-28
DDX60L	1.858	4.938	3.00E-63	6.00E-61	RP11-680F20.9	-1.534	1.163	1.00E-07	9.00E-07
DEFB4A	9.244	6.101	3.00E-149	7.00E-146	RP11-701P16.5	2.357	1.288	5.00E-18	1.00E-16
DEFB4B	5.813	2.646	9.00E-33	4.00E-31	RP11-71G12.1	2.103	1.264	2.00E-14	3.00E-13
DES	-2.23	7.767	3.00E-29	1.00E-27	RP11-71L14.3	1.828	2.363	1.00E-38	1.00E-36
DGAT2L6	-3.41	4.515	7.00E-27	3.00E-25	RP1-172H20.4	2.475	1.609	8.00E-32	4.00E-30
DHRS2	-2.36	1.604	2.00E-21	5.00E-20	RP11-756H20.1	-3.03	1.729	2.00E-32	1.00E-30
DHRS9	1.658	4.152	8.00E-39	6.00E-37	RP11-76I7.1	2.531	1.307	4.00E-21	1.00E-19
DIO3	-1.53	2.203	6.00E-32	3.00E-30	RP11-789C1.1	-1.931	1.312	1.00E-15	2.00E-14
DIRAS2	-2.05	1.416	4.00E-20	1.00E-18	RP11-79H23.3	1.834	1.585	2.00E-20	5.00E-19
DKK4	1.981	1.303	2.00E-14	3.00E-13	RP11-832A4.7	1.587	2.033	4.00E-29	2.00E-27
DLK1	-2.25	1.413	2.00E-16	3.00E-15	RP11-861A13.4	3.052	1.896	2.00E-61	3.00E-59
DNAH8	-1.65	1.775	2.00E-18	5.00E-17	RP11-8L18.2	2.423	1.406	2.00E-08	2.00E-07
DNASE1L3	1.561	4.212	1.00E-45	1.00E-43	RP11-93K22.13	1.546	1.173	3.00E-08	3.00E-07
DOK7	-1.7	1.513	3.00E-17	6.00E-16	RP11-98L5.5	-3.878	2.517	4.00E-113	3.00E-110
DSC2	2.322	8.384	9.00E-70	2.00E-67	RP1-232L22B.1	1.676	3.126	8.00E-56	1.00E-53
DSG3	1.763	8.916	2.00E-72	6.00E-70	RP1-257C22.2	1.893	1.8	3.00E-26	1.00E-24
DUSP9	1.701	1.589	7.00E-18	1.00E-16	RP1-27K12.4	-1.551	1.289	1.00E-10	1.00E-09
DYNAP	2.816	1.398	3.00E-24	9.00E-23	RP13-25N22.1	1.717	1.217	1.00E-09	1.00E-08

EDA	-1.55	3.571	1.00E-91	5.00E-89	RP1-56K13.5	-1.543	1.251	2.00E-09	2.00E-08
EEF1DP3	1.737	1.513	1.00E-16	2.00E-15	RP1-80N2.2	-1.599	1.436	2.00E-13	4.00E-12
EHF	2.173	7.837	1.00E-132	2.00E-129	RP3-325F22.5	1.739	1.616	1.00E-19	2.00E-18
ELF3	1.739	4.138	8.00E-45	7.00E-43	RP3-414A15.12	-1.526	1.425	9.00E-13	1.00E-11
ELOVL3	-3.56	5.403	3.00E-43	2.00E-41	RP3-42906.1	-1.852	1.236	3.00E-12	4.00E-11
EMILIN3	-2.26	3.11	2.00E-49	2.00E-47	RP4-529N6.2	4.111	2.565	9.00E-95	4.00E-92
ENHO	-1.75	2.026	3.00E-35	2.00E-33	RP4-732G19.2	2.328	1.855	7.00E-28	3.00E-26
ENKUR	3.529	1.752	1.00E-52	1.00E-50	RP5-1052M9.1	1.814	2.221	1.00E-10	2.00E-09
ENPP5	-1.57	2.674	7.00E-53	9.00E-51	RP5-1109J22.1	2.461	1.571	3.00E-30	1.00E-28
EPHB2	2.453	4.773	5.00E-111	4.00E-108	RP5-1109J22.2	1.5	1.142	5.00E-08	5.00E-07
EPOP	1.948	3.881	6.00E-79	2.00E-76	RP5-1142J19.1	1.614	1.31	6.00E-11	8.00E-10
EPSTI1	2.205	4.531	9.00E-91	4.00E-88	RP5-857K21.11	1.857	2.445	1.00E-10	2.00E-09
ERBB4	-1.66	1.82	4.00E-26	1.00E-24	RP5-857K21.7	1.747	2.254	8.00E-10	9.00E-09
ERC2	1.533	1.336	4.00E-10	5.00E-09	RP5-871G17.3	-1.986	1.209	3.00E-13	4.00E-12
ESPN	-1.55	4.683	4.00E-37	2.00E-35	RP5-907D15.2	-1.926	1.577	3.00E-24	9.00E-23
ETNK2	-1.55	3.157	5.00E-69	1.00E-66	RP6-65G23.1	3.069	1.571	4.00E-40	3.00E-38
EXTL1	-1.66	2.258	2.00E-30	1.00E-28	RP6-65G23.3	1.537	2.967	2.00E-46	2.00E-44
FA2H	-2.44	4.078	6.00E-41	5.00E-39	RRM2	1.801	4.895	8.00E-27	3.00E-25
FABP5	3.025	6.798	1.00E-83	5.00E-81	RSAD2	3.082	4.838	1.00E-58	2.00E-56
FABP7	-1.83	4.94	2.00E-15	3.00E-14	RTP4	2.256	2.728	5.00E-74	1.00E-71
FADS1	-2.23	6.524	1.00E-42	1.00E-40	RUFY4	1.675	1.306	3.00E-11	3.00E-10
FADS2	-3.22	8.99	2.00E-44	2.00E-42	S100A12	6.943	4.538	1.00E-205	1.00E-201
FADS2P1	1.538	1.133	2.00E-07	1.00E-06	S100A7	7.086	11.449	9.00E-152	2.00E-148
FAM110C	1.952	5.424	1.00E-158	4.00E-155	S100A7A	9.84	9.985	1.00E-158	4.00E-155
FAM166B	-1.62	1.608	5.00E-19	1.00E-17	S100A8	7.252	12.004	5.00E-167	2.00E-163
FAM189A2	-1.64	3.822	1.00E-62	2.00E-60	S100A9	7.364	12.375	2.00E-135	3.00E-132
FAM201A	-1.54	1.508	4.00E-15	6.00E-14	S100P	1.909	4.747	6.00E-29	3.00E-27
FAM227A	-1.69	2.06	7.00E-32	4.00E-30	SAA1	1.884	4.049	4.00E-24	1.00E-22
FAM3D	1.574	2.395	1.00E-21	3.00E-20	SAA2	3.115	2.131	2.00E-45	2.00E-43
FAM43A	1.96	5.949	7.00E-62	1.00E-59	SAMD9	2.948	5.87	2.00E-115	2.00E-112
FAM83A	1.67	5.928	1.00E-26	4.00E-25	SAMSN1	1.861	2.986	2.00E-57	4.00E-55
FAR2	-2.21	5.218	5.00E-42	4.00E-40	SCARA5	-1.513	7.727	1.00E-18	3.00E-17
FBLN1	-1.59	10.047	7.00E-43	6.00E-41	SCGB1D2	-1.625	5.516	3.00E-13	4.00E-12
FBP1	-1.63	2.622	2.00E-28	7.00E-27	SCGB2A1	-2.061	1.796	1.00E-23	3.00E-22
FBXO45	1.568	6.628	9.00E-108	6.00E-105	SCIN	-1.643	3.08	8.00E-65	2.00E-62
FCGR1A	1.849	1.338	1.00E-13	2.00E-12	SCN2A	1.647	1.813	3.00E-17	7.00E-16
FCGR3A	2.545	3.395	4.00E-62	7.00E-60	SCNN1D	2.285	3.278	8.00E-46	7.00E-44

FCGR3B	1.582	2.65	8.00E-19	2.00E-17	SCUBE1	-2.09	2.432	7.00E-53	9.00E-51
FCHSD1	2.203	6.837	3.00E-73	8.00E-71	SEC14L4	-2.291	1.822	1.00E-25	4.00E-24
FCMR	1.581	2.668	6.00E-47	6.00E-45	SEC14L6	-3.351	5.449	6.00E-33	3.00E-31
FCRL3	1.592	1.276	1.00E-09	1.00E-08	SELE	1.641	4.145	5.00E-25	2.00E-23
FGFBP2	-1.58	3.489	8.00E-26	3.00E-24	SELL	2.383	3.12	2.00E-62	4.00E-60
FLG2	-2.14	11.174	6.00E-35	3.00E-33	SEMA3B	-1.756	4.784	3.00E-43	3.00E-41
FLNC	-1.64	6.407	3.00E-38	2.00E-36	SERHL2	-1.553	2.503	2.00E-24	7.00E-23
FLVCR2	1.645	4.18	4.00E-78	1.00E-75	SERPINA1	2.052	3.27	1.00E-59	2.00E-57
FOXE1	2.943	3.619	1.00E-119	1.00E-116	SERPINA12	-2.076	7.351	8.00E-44	7.00E-42
FOXP3	1.944	3.166	1.00E-46	1.00E-44	SERPINA3	1.616	1.291	3.00E-10	3.00E-09
FPR1	2.801	2.57	1.00E-54	2.00E-52	SERPINB1	1.613	6.636	4.00E-89	2.00E-86
FPR2	2.182	1.363	5.00E-17	9.00E-16	SERPINB13	2.746	7.111	3.00E-111	2.00E-108
FRMD7	-1.64	1.533	9.00E-17	2.00E-15	SERPINB3	5.726	9.941	9.00E-124	1.00E-120
FUT2	2.415	4.734	7.00E-71	2.00E-68	SERPINB4	8.944	10.144	5.00E-141	8.00E-138
FUT3	2.654	3.749	4.00E-86	1.00E-83	SERPINB9	1.556	4.305	8.00E-52	9.00E-50
FUT7	1.535	1.793	3.00E-20	8.00E-19	SERTM1	-2.367	2.179	1.00E-38	9.00E-37
GABBR2	-2.34	2.131	6.00E-41	4.00E-39	SEZ6L	-1.552	2.195	2.00E-30	9.00E-29
GAL	-3.45	4.705	3.00E-36	2.00E-34	SFRP5	-1.824	2.115	1.00E-37	7.00E-36
GBAP1	2.222	2.805	3.00E-73	8.00E-71	SGCA	-1.82	3.989	7.00E-38	5.00E-36
GBP1	2.215	5.863	1.00E-125	2.00E-122	SGCG	-1.558	2.857	2.00E-46	2.00E-44
GBP5	2.552	3.174	6.00E-84	2.00E-81	SGK2	-1.694	2.843	1.00E-21	3.00E-20
GBP6	2.8	4.068	8.00E-96	4.00E-93	SH2D1A	1.521	1.988	5.00E-25	2.00E-23
GCNT4	1.968	4.429	1.00E-79	3.00E-77	SH3PXD2A-AS1	2.194	4.243	8.00E-134	1.00E-130
GDA	5.179	5.111	1.00E-152	4.00E-149	SHISA9	-1.562	1.608	4.00E-18	9.00E-17
GDPD3	2.236	4.822	6.00E-76	2.00E-73	SIRPG	1.578	1.927	8.00E-24	2.00E-22
GGH	1.574	5.985	1.00E-90	5.00E-88	SLAMF7	1.519	3.901	4.00E-75	1.00E-72
GJA3	1.55	2.172	4.00E-32	2.00E-30	SLC14A1	-2.213	2.858	2.00E-33	1.00E-31
GJB2	3.965	10.539	5.00E-172	3.00E-168	SLC16A6	1.691	4.15	8.00E-83	3.00E-80
GJB4	-3.16	4.407	3.00E-135	5.00E-132	SLC22A31	-2.08	1.747	3.00E-22	8.00E-21
GJB6	2.724	8.565	5.00E-106	3.00E-103	SLC25A18	-1.877	1.685	2.00E-19	6.00E-18
GK	1.602	3.142	2.00E-58	3.00E-56	SLC26A3	-2.861	1.459	1.00E-25	4.00E-24
GLDC	-2.63	3.254	1.00E-29	6.00E-28	SLC26A4	2.192	2.285	7.00E-43	6.00E-41
GLDCP1	-2.32	1.793	7.00E-25	2.00E-23	SLC26A5	-1.53	1.367	2.00E-11	2.00E-10
GLT1D1	1.584	2.969	8.00E-53	1.00E-50	SLC26A9	2.928	5.146	3.00E-92	2.00E-89
GM2A	1.77	9.153	3.00E-135	4.00E-132	SLC27A2	-2.06	2.597	2.00E-33	1.00E-31
GNLY	1.774	2.304	3.00E-31	2.00E-29	SLC2A14	-1.977	1.436	8.00E-18	2.00E-16
GPD1	-2.16	4.841	1.00E-25	4.00E-24	SLC30A10	-1.84	1.191	1.00E-11	1.00E-10

GPR1	1.745	2.806	2.00E-57	3.00E-55	SLC46A2	-1.895	4.255	7.00E-42	6.00E-40
GPR12	-2.09	3.39	2.00E-45	2.00E-43	SLC4A10	1.577	1.258	3.00E-09	3.00E-08
GPR15	1.784	1.678	4.00E-18	8.00E-17	SLC52A3	1.61	2.896	4.00E-46	3.00E-44
GPR158	2.138	1.501	4.00E-22	1.00E-20	SLC5A1	1.965	6.821	1.00E-65	3.00E-63
GPR18	1.989	1.56	2.00E-13	3.00E-12	SLC6A14	4.264	6.999	3.00E-130	3.00E-127
GPR68	1.937	5.258	4.00E-68	9.00E-66	SLC9A2	-1.798	2.591	2.00E-48	2.00E-46
GPR84	1.796	1.438	2.00E-15	3.00E-14	SLCO4C1	-2.041	2.327	5.00E-28	2.00E-26
GPT	-1.66	4.053	8.00E-30	3.00E-28	SLURP2	1.783	3.018	1.00E-29	5.00E-28
GREB1L	-1.53	2.407	5.00E-31	2.00E-29	SMOX	1.713	5.35	2.00E-50	2.00E-48
GREM2	-1.65	4.097	1.00E-36	7.00E-35	SNTB1	-1.834	4.578	3.00E-81	9.00E-79
GSTA3	-1.8	2.396	5.00E-51	6.00E-49	SOAT1	-1.518	6.201	9.00E-25	3.00E-23
GZMA	1.716	2.547	2.00E-41	1.00E-39	SOCS3	2.172	4.585	6.00E-68	1.00E-65
GZMB	3.649	2.786	7.00E-92	3.00E-89	SOST	3.036	2.07	1.00E-43	9.00E-42
HABP2	2.217	1.247	2.00E-15	3.00E-14	SOWAHB	-1.701	2.217	5.00E-43	4.00E-41
HAL	2.143	7.847	1.00E-46	1.00E-44	SOX7	1.578	4.358	4.00E-107	3.00E-104
HAO2	-3.45	2.964	1.00E-41	1.00E-39	SP8	-2.267	2.519	9.00E-54	1.00E-51
HAS3	1.741	5.83	1.00E-23	3.00E-22	SPDEF	-1.612	2.79	7.00E-19	2.00E-17
HELZ2	1.705	6.217	3.00E-48	3.00E-46	SPIB	2.553	1.597	5.00E-30	2.00E-28
HEPHL1	4.056	7.679	5.00E-51	6.00E-49	SPINK1	-2.094	1.25	7.00E-16	1.00E-14
HERC6	3.371	6.217	2.00E-123	2.00E-120	SPP1	1.671	2.034	1.00E-14	2.00E-13
HGD	-2.8	1.828	2.00E-29	7.00E-28	SPRR1A	1.613	7.774	5.00E-17	1.00E-15
HHATL	-2.01	1.9	3.00E-26	1.00E-24	SPRR1B	2.47	10.038	4.00E-41	3.00E-39
HIF3A	-1.63	2.862	8.00E-41	6.00E-39	SPRR2A	8.776	10.02	3.00E-210	5.00E-206
HIST1H1A	1.585	1.14	8.00E-06	6.00E-05	SPRR2B	6.996	8.378	2.00E-150	4.00E-147
HIST1H4E	2.423	1.726	2.00E-11	2.00E-10	SPRR2C	7.357	4.374	2.00E-156	6.00E-153
HK2	1.541	7.004	7.00E-71	2.00E-68	SPRR2D	5.451	9.456	4.00E-172	3.00E-168
HMGCS2	-2.16	3.717	5.00E-39	3.00E-37	SPRR2E	3.6	10.552	1.00E-108	8.00E-106
HORMAD1	2.161	2.148	1.00E-15	2.00E-14	SPRR2F	8.74	8.218	9.00E-134	1.00E-130
HOXB13	1.577	1.157	3.00E-08	3.00E-07	SPRR2G	4.362	10.223	8.00E-105	5.00E-102
HOXD11	1.85	1.404	2.00E-15	4.00E-14	SPRR4	-2.511	6.146	2.00E-46	2.00E-44
HPSE	2.57	5.733	3.00E-171	2.00E-167	SPX	-1.985	1.399	2.00E-13	2.00E-12
HRH2	3.168	5.063	9.00E-105	6.00E-102	ST6GAL2	-1.878	1.865	1.00E-33	6.00E-32
HRH3	2.709	1.494	4.00E-31	2.00E-29	ST6GALNAC1	1.981	2.715	3.00E-49	3.00E-47
HRNR	3.452	3.843	5.00E-39	4.00E-37	STAT1	2.076	8.23	2.00E-153	6.00E-150
HS3ST3A1	2.256	1.834	3.00E-36	2.00E-34	SYNM	-1.541	6.032	3.00E-39	2.00E-37
HS3ST6	-2.63	3.394	4.00E-74	1.00E-71	SYPL2	-2.574	2.238	1.00E-37	8.00E-36
HSD11B1	-2.77	4.192	1.00E-79	4.00E-77	SYT5	1.623	1.424	3.00E-13	5.00E-12

HSD17B13	-2.62	1.815	9.00E-39	6.00E-37	SYT8	-2.973	4.767	1.00E-85	4.00E-83
HSD3B1	-3.58	2.568	5.00E-38	3.00E-36	SYT9	-2.545	1.369	2.00E-26	6.00E-25
HSPB7	-1.51	3.972	7.00E-35	4.00E-33	TACR2	-1.559	2.253	5.00E-33	3.00E-31
HSPD1P2	1.891	1.218	6.00E-12	8.00E-11	TCL1A	2.491	1.378	9.00E-19	2.00E-17
HSPD1P3	3.732	1.615	4.00E-43	4.00E-41	TCN1	7.743	6.529	2.00E-179	2.00E-175
HTR3A	3.768	2.638	4.00E-62	7.00E-60	TDO2	1.939	1.326	3.00E-14	4.00E-13
HTR3B	1.914	1.168	1.00E-11	1.00E-10	TEX101	3.536	1.978	2.00E-79	5.00E-77
HYAL4	3.194	2.912	2.00E-104	1.00E-101	TG	-1.942	3.299	1.00E-52	2.00E-50
ICOS	2.634	2.092	2.00E-58	3.00E-56	TGM1	2.324	7.436	2.00E-56	4.00E-54
ID01	2.907	2.326	5.00E-69	1.00E-66	TGM3	2.616	8.991	1.00E-51	1.00E-49
IFI16	1.618	7.589	4.00E-146	8.00E-143	TGM6	2.709	1.887	1.00E-34	8.00E-33
IFI27	3.795	7.606	9.00E-119	8.00E-116	THRSP	-3.62	5.711	1.00E-39	8.00E-38
IFI44	3.202	5.511	9.00E-84	3.00E-81	TIGIT	2.133	2.746	3.00E-59	6.00E-57
IFI44L	2.548	5.186	2.00E-39	1.00E-37	TMC5	2.968	4.521	2.00E-98	9.00E-96
IFI6	3.074	7.535	6.00E-63	1.00E-60	TMEM132B	-1.66	2.954	3.00E-56	4.00E-54
IFIH1	1.807	5.433	7.00E-82	2.00E-79	TMEM132C	-1.915	3.225	7.00E-72	2.00E-69
IFIT1	2.181	5.512	3.00E-49	3.00E-47	TMEM14EP	1.976	1.278	3.00E-07	3.00E-06
IFIT3	2.004	5.915	1.00E-55	1.00E-53	<i>TMEM171</i>	1.828	2.317	1.00E-34	7.00E-33
IFNG	1.983	1.216	1.00E-12	2.00E-11	TMEM255A	-1.756	2.763	3.00E-57	5.00E-55
IGFL1	3.748	3.803	4.00E-59	6.00E-57	TMEM45B	1.768	6.352	5.00E-57	7.00E-55
IGFL2	-2.58	4.24	2.00E-112	2.00E-109	TMEM56	-2.189	3.656	2.00E-36	1.00E-34
IGHD	-1.52	1.523	4.00E-07	4.00E-06	ТМЕМ63С	-2.798	2.64	3.00E-56	4.00E-54
IGHEP1	-1.71	1.166	3.00E-10	4.00E-09	TMPRSS11A	4.068	1.708	3.00E-53	4.00E-51
IGHG2	1.912	4.017	8.00E-09	8.00E-08	TMPRSS11D	7.077	5.193	9.00E-199	9.00E-195
IGHG4	3.643	5.034	4.00E-12	6.00E-11	TMPRSS11E	-2.026	2.513	1.00E-38	7.00E-37
IGHV1-46	2.712	2.496	1.00E-09	2.00E-08	TMPRSS4	2.467	4.595	2.00E-67	4.00E-65
IGHV3-23	2.019	2.943	1.00E-07	1.00E-06	TMPRSS6	-2.586	2.077	9.00E-59	1.00E-56
IGHV4-61	2.228	1.47	4.00E-07	3.00E-06	TNFRSF9	2.504	2.008	4.00E-54	6.00E-52
IGKV1D-8	-1.77	1.265	5.00E-07	4.00E-06	TNIP3	5.957	3.225	6.00E-109	4.00E-106
IGKV3-11	2.854	2.899	2.00E-10	3.00E-09	TNN	-1.512	3.381	3.00E-24	1.00E-22
IGKV3-20	1.901	2.739	3.00E-07	2.00E-06	TNNC1	-2.175	2.133	2.00E-57	4.00E-55
IGLV3-10	-1.83	1.818	2.00E-07	2.00E-06	TNNI2	-2.05	2.514	5.00E-37	3.00E-35
IKZF3	1.617	3.49	3.00E-38	2.00E-36	TNNT2	-1.852	2.644	4.00E-65	9.00E-63
IL12B	2.635	1.335	2.00E-23	5.00E-22	TNNT3	-2.011	1.885	6.00E-38	4.00E-36
IL12RB1	1.595	2.263	2.00E-35	1.00E-33	TPPP	-2.639	5.217	2.00E-71	5.00E-69
IL12RB2	1.856	3.254	2.00E-89	9.00E-87	TRDN	-1.533	1.261	2.00E-09	2.00E-08
IL17A	3.373	1.439	1.00E-36	7.00E-35	TREM1	1.77	1.652	4.00E-16	7.00E-15

IL17C	2.581	1.301	5.00E-22	2.00E-20	TREML1	1.863	1.41	1.00E-15	2.00E-14
IL17F	2.49	1.271	2.00E-19	4.00E-18	TREX2	2.921	5.273	5.00E-83	2.00E-80
IL19	6.266	2.921	3.00E-77	9.00E-75	TRG-AS1	1.579	2.095	5.00E-29	2.00E-27
IL20	3.345	2.012	1.00E-51	1.00E-49	TRIM10	2	1.23	7.00E-13	1.00E-11
IL21R	1.868	2.096	1.00E-38	9.00E-37	TRIM15	1.978	1.203	6.00E-12	8.00E-11
IL22	1.807	1.156	1.00E-10	1.00E-09	TRIM22	1.868	6.308	3.00E-105	2.00E-102
IL26	2.509	1.31	4.00E-21	1.00E-19	TRIM55	-2.807	1.728	7.00E-30	3.00E-28
IL2RA	1.971	2.498	6.00E-53	7.00E-51	TSPAN8	-1.698	4.342	7.00E-26	2.00E-24
IL34	-2.51	5.122	2.00E-84	7.00E-82	TSPEAR	-1.615	1.467	3.00E-15	5.00E-14
IL36A	7.854	4.326	3.00E-151	7.00E-148	ТТСЗ9А	2.345	5.321	2.00E-104	1.00E-101
IL36G	5.292	7.397	9.00E-208	1.00E-203	TUBBP5	1.633	1.935	1.00E-26	5.00E-25
IL36RN	2.761	8.159	1.00E-83	5.00E-81	ТҮМР	3.348	7.574	7.00E-112	5.00E-109
IL37	-2.73	4.828	1.00E-81	4.00E-79	UGT1A10	2.08	1.267	1.00E-14	2.00E-13
IL4I1	2.45	2.983	1.00E-55	2.00E-53	UGT1A7	3.874	2.808	2.00E-100	9.00E-98
IL6	1.758	1.293	1.00E-11	2.00E-10	UGT2A1	-2.173	1.547	3.00E-23	1.00E-21
IL7R	1.887	4.781	6.00E-70	1.00E-67	UGT3A2	-3.646	2.967	2.00E-125	2.00E-122
IL8RBP	1.823	1.286	3.00E-12	4.00E-11	ULBP2	1.687	1.794	3.00E-21	7.00E-20
INA	2.828	3.237	2.00E-108	2.00E-105	UNC5A	1.703	1.632	2.00E-19	5.00E-18
IRAK2	1.79	3.916	6.00E-103	3.00E-100	UPB1	-2.688	2.153	1.00E-33	6.00E-32
IRF7	2.356	4.016	2.00E-65	3.00E-63	UPK1B	-1.715	2.27	2.00E-09	2.00E-08
IRX6	-1.51	3.713	8.00E-36	5.00E-34	UPP1	1.733	5.174	2.00E-19	4.00E-18
ISG15	2.653	4.976	2.00E-45	2.00E-43	VGLL2	-1.514	1.366	2.00E-11	2.00E-10
IYD	-2.24	1.476	3.00E-23	8.00E-22	VNN1	2.624	2.86	1.00E-76	4.00E-74
JPH2	-1.62	3.612	6.00E-63	1.00E-60	VNN3	5.66	2.832	9.00E-171	4.00E-167
KANK4	-1.67	1.848	6.00E-28	2.00E-26	VSNL1	1.631	5.514	2.00E-104	1.00E-101
KAZALD1	-1.58	3.125	2.00E-39	1.00E-37	WDR72	-2.026	3.116	2.00E-51	3.00E-49
KB-1410C5.3	-2.1	1.2	6.00E-15	1.00E-13	WFDC12	2.451	6.193	4.00E-49	4.00E-47
KB-1639H6.4	1.947	1.425	2.00E-16	4.00E-15	WFDC3	-2.35	2.859	3.00E-36	2.00E-34
KCNG3	1.507	1.361	2.00E-10	2.00E-09	WFIKKN2	-2.17	1.383	5.00E-21	1.00E-19
KCNH2	-1.65	1.733	4.00E-23	1.00E-21	WIF1	-2.75	3.86	9.00E-38	6.00E-36
KCNJ15	1.956	4.525	2.00E-62	3.00E-60	WNK2	-2.424	4.967	3.00E-67	7.00E-65
KCNJ18	1.565	3.079	1.00E-20	3.00E-19	WNT2	-2.75	2.066	1.00E-63	3.00E-61
KCNK10	2.988	2.51	7.00E-103	4.00E-100	WNT5A	2.218	5.373	1.00E-138	2.00E-135
KCTD16	-1.62	1.339	4.00E-12	5.00E-11	WNT7B	-1.697	5.208	5.00E-62	9.00E-60
KLF15	-1.73	2.27	7.00E-47	6.00E-45	XAF1	2.415	3.767	3.00E-60	6.00E-58
KLHDC7B	3.334	2.491	2.00E-49	2.00E-47	XDH	1.731	4.417	7.00E-24	2.00E-22
KLK10	1.934	7.296	3.00E-43	2.00E-41	ZBP1	2.018	1.837	7.00E-31	3.00E-29

KLK13	3.904	6.306	3.00E-131	4.00E-128	ZBTB16	-2.241	4.181	2.00E-41	2.00E-39
KLK6	3.084	6.905	2.00E-63	3.00E-61	ZC3H12A	3.612	7.101	3.00E-166	1.00E-162
KLRB1	1.85	2.11	1.00E-32	6.00E-31	ZDHHC11	-1.544	1.759	2.00E-19	6.00E-18
KLRF2	-1.66	1.354	9.00E-13	1.00E-11	ZDHHC11B	-2.02	1.878	9.00E-31	4.00E-29
KRT16	3.701	11.942	1.00E-51	2.00E-49	ZDHHC21	1.608	5.581	1.00E-75	4.00E-73
KRT16P2	2.992	2.338	7.00E-40	5.00E-38	ZIC1	2.187	1.874	1.00E-24	4.00E-23
KRT16P3	1.945	1.513	3.00E-19	6.00E-18	ZNF135	-1.587	2.505	3.00E-50	3.00E-48
KRT24	2.274	1.567	5.00E-17	1.00E-15	ZNF725P	-2.171	1.335	3.00E-14	4.00E-13
KRT3	1.695	1.899	2.00E-14	3.00E-13	ZNF812P	3.374	2.067	2.00E-40	2.00E-38
KRT31	-1.54	4.557	5.00E-21	1.00E-19	ZP1	-2.194	1.388	3.00E-19	8.00E-18
KRT37	1.725	1.265	9.00E-11	1.00E-09	ZSCAN18	-1.655	4.463	3.00E-103	1.00E-100

Приложение,	таблица 4. Результаты обогащения GO-процессов генами о	с дифференциал	ьной экспрессией		
Индекс GO	Описание	P-value	FDR	Количество генов в бд	Количество ДЭГ в пути
GO:0001775	Активация иммунных клеток	1.43E-10	3.69E-08	965	77
GO:0045321	Активация лейкоцитов	7.48E-10	1.75E-07	852	69
GO:0045087	Врождённый иммунный ответ	2.28E-14	1.10E-11	465	55
GO:0006959	Гуморальный иммунный ответ	8.19E-10	1.89E-07	305	36
GO:0006955	Иммунный ответ	3.99E-26	7.71E-23	1105	118
GO:0072676	Миграция лимфоцитов	4.39E-10	1.08E-07	61	16
GO:1990266	Миграция нейтрофилов	7.25E-18	6.23E-15	89	27
GO:0006954	Провоспалительные процессы	2.60E-25	4.48E-22	418	68
GO:0097530	Регуляция миграции гранулоцитов	5.70E-18	5.51E-15	96	28
GO:0097529	Регуляция миграции миелоидных лимфоцитов	5.99E-18	5.45E-15	121	31
GO:0002682	Регуляция системного иммунного ответа	1.57E-17	1.28E-14	1496	123
GO:0070098	Сигнальный путь хемокинов	2.48E-14	1.13E-11	76	22
GO:0002376	Системный иммунный ответ	2.86E-32	8.84E-29	2206	194
GO:0071621	Хемотаксис гранулоцитов	2.36E-17	1.83E-14	85	26
GO:0048247	Хемотаксис лейкоцитов	8.59E-10	1.96E-07	47	14
GO:0030595	Хемотаксис лимфоцитов	3.34E-17	2.46E-14	137	32
GO:0030593	Хемотаксис нейтрофилов	4.29E-18	4.43E-15	80	26
GO:0070268	Корнификация	4.34E-15	2.58E-12	112	27
GO:0030216	Дифференциация кератиноцитов	1.34E-14	6.89E-12	74	22
GO:0009913	Дифференциация эпидермы	1.22E-13	4.62E-11	90	23
GO:0030855	Дифференциация эпителия	2.32E-11	6.64E-09	310	39
GO:0001775	Клеточная активация	1.43E-10	3.69E-08	965	77
GO:0008544	Развитие эпидермиса	3.03E-08	4.60E-06	80	16
GO:0010647	Позитивная регуляция клеточных взаимодействий	3.23E-08	4.76E-06	1726	108
GO:0031424	Кератинизация	2.02E-07	2.53E-05	179	23

Приложение, таблица 5. Список дифференциально метилированных локусов на чипе Illumina Methylation BeadChip 450k. Положительные										
значения бета-р	азницы обозначают повы	шенный уровен	ь метилирования ДНК в поражённой	коже, а отрица	гельные- в здоров	вой коже.				
Имя пробы	Ген	Часть гена	Ассоциация с СрG-островком	Часть CpG-	Бета-разница	p-value c				
				островка		поправкой				
cg25928474	ABCC3	Body	chr17:48712050-48712705	S_Shelf	-0.124	8.67E-13				
cg01116137	ACSS1	Body	chr20:25037707-25039211	N_Shelf	0.105	2.35E-09				
cg25196508	ADCY6	5'UTR	chr12:49182421-49182658	N_Shore	0.11	3.40E-14				
cg16320159	ADD3	TSS200	chr10:111767087-111768355	N_Shore	0.106	4.78E-15				
cg14209784	AGAP11	TSS1500	chr10:88730554-88731632	N_Shore	0.101	6.35E-13				
cg11511175	AGAP2	3'UTR	chr12:58119909-58121551	Island	0.104	3.44E-10				
cg13879455	AGAP2	TSS1500	chr12:58130870-58132047	S_Shore	0.11	3.33E-11				
cg14845962	AGAP2	3'UTR	chr12:58119909-58121551	Island	0.11	3.06E-09				
cg13375463	AHDC1	5'UTR	chr1:27901660-27902688	N_Shelf	0.125	4.97E-18				
cg26484813	AHNAK	5'UTR	chr11:62313282-62314314	N_Shore	0.101	3.17E-13				
cg01636354	AMOTL2	Body	chr3:134080390-134080596	N_Shore	0.108	3.57E-15				
cg05524458	ANKRD33B	Body	chr5:10562816-10565680	S_Shore	0.138	4.68E-16				
cg03930313	ARHGAP23	Body	chr17:36621138-36621406	Island	0.105	3.82E-10				
cg08134678	ARHGAP9	Body	chr12:57869075-57870182	S_Shelf	-0.145	1.04E-16				
cg26681847	ARHGEF12	Body	chr11:120206460-120207649	S_Shore	0.106	1.64E-12				
cg17164954	ARID1B	Body	chr6:157342060-157343075	S_Shelf	0.124	5.97E-14				
cg01826354	B3GNTL1	Body	chr17:81009245-81009999	N_Shelf	-0.122	1.25E-13				
cg14106046	B3GNTL1	Body	chr17:81009245-81009999	N_Shelf	-0.12	9.23E-12				
cg04665204	BAHCC1	Body	chr17:79420144-79420437	Island	-0.108	4.34E-09				
cg02447879	BAHCC1	Body	chr17:79393341-79393742	Island	0.103	7.65E-10				
cg13515269	BHLHE41	3'UTR	chr12:26275049-26275878	N_Shore	0.117	2.59E-15				
cg16047471	BHLHE41	3'UTR	chr12:26275049-26275878	N_Shore	0.143	2.55E-14				
cg12926596	BLOC1S1	Body	chr12:56109798-56110298	S_Shore	0.121	8.30E-16				
cg07651316	BTBD12	Body	chr16:3639092-3639306	S_Shelf	-0.179	7.66E-19				
cg00019678	C12orf34	5'UTR	chr12:110151327-110152758	S_Shore	0.1	9.93E-12				
cg01655008	C14orf109	Body	chr14:93650745-93651652	S_Shore	-0.124	2.90E-15				
cg17923947	C14orf138	TSS1500	chr14:50582970-50583504	S_Shore	0.132	9.86E-17				
cg06834507	Clorf106	Body	chr1:200880593-200881270	N_Shelf	-0.139	1.54E-15				
cg15553418	Clorf144	Body	chr1:16693621-16694270	S_Shelf	-0.11	1.07E-09				
cg11243995	Clorf198	Body	chr1:231003631-231004655	N_Shore	0.101	3.17E-15				
cg08854008	C1orf200	Body	chr1:9711780-9713001	S_Shore	-0.145	2.53E-13				
cg05628702	C20orf117	Body	chr20:35491001-35492805	Island	0.104	3.96E-10				
cg25894160	C20orf3	TSS1500	chr20:24972665-24973700	S_Shore	0.101	1.19E-11				

cg06937882	C20orf3	TSS1500	chr20:24972665-24973700	S_Shore	0.107	2.27E-13
cg05054998	C21orf70	Body	chr21:46378278-46378645	Island	0.11	1.15E-09
cg18638180	C21orf70	Body	chr21:46378278-46378645	S_Shore	0.143	2.68E-13
cg14856679	C22orf46	TSS1500	chr22:42084641-42085014	S_Shore	0.119	1.11E-14
cg08350549	C3orf26	Body	chr3:99594969-99595215	N_Shelf	0.108	2.53E-11
cg21236153	C9orf25	Body	chr9:34457375-34458892	N_Shore	0.104	5.41E-16
cg08578641	C9orf25	Body	chr9:34457375-34458892	Island	0.107	9.29E-11
cg23598352	C9orf46	5'UTR	chr9:5437566-5437996	N_Shore	-0.161	2.37E-16
cg14384093	C9orf5	Body	chr9:111881482-111882278	N_Shelf	0.133	3.06E-16
cg07462448	CASP7	5'UTR	chr10:115439007-115440196	S_Shore	-0.107	9.41E-11
cg01352294	CCDC162	TSS1500	chr6:109611449-109612230	S_Shelf	-0.108	6.53E-13
cg02741985	CCDC57	3'UTR	chr17:80058665-80058884	S_Shore	0.108	7.07E-14
cg22663489	CCDC88B	1stExon	chr11:64109822-64110228	N_Shelf	-0.105	2.16E-11
cg09722555	CCL27	Body	chr9:34664930-34665687	N_Shelf	0.105	8.18E-08
cg25611369	CCND1	Body	chr11:69461060-69461378	N_Shore	0.106	8.83E-08
cg21108085	CD82	5'UTR	chr11:44586602-44587404	S_Shelf	-0.109	3.26E-12
cg16565696	CDH22	Body	chr20:44838887-44839204	N_Shelf	-0.102	3.05E-07
cg25198049	CGN	Body	chr1:151512661-151513199	N_Shelf	-0.17	1.69E-17
cg07596668	CGN	3'UTR	chr1:151512661-151513199	N_Shelf	-0.113	1.80E-11
cg21879102	CIT	Body	chr12:120241921-120242233	N_Shore	0.111	1.57E-12
cg09050670	CLCN7	Body	chr16:1524520-1525534	N_Shelf	-0.123	9.74E-12
cg14285050	COL9A2	Body	chr1:40781004-40781445	N_Shelf	-0.102	2.47E-16
cg27583010	CORO1A	Body	chr16:30194747-30195357	S_Shelf	-0.112	4.23E-13
cg22707705	CYP27A1	TSS1500	chr2:219646432-219647181	N_Shore	0.125	4.10E-13
cg19430423	CYP2S1	Body	chr19:41698743-41699325	S_Shelf	-0.187	9.50E-21
cg21234082	DAB2IP	Body	chr9:124360438-124362382	S_Shore	-0.109	1.68E-05
cg04074004	DDAH2	Body	chr6:31695894-31698245	Island	0.107	9.74E-12
cg25095032	DDAH2	Body	chr6:31695894-31698245	Island	0.113	8.98E-10
cg08379738	DENND1C	Body	chr19:6476682-6477127	Island	0.108	4.39E-10
cg08864105	DENND2D	1stExon	chr1:111746337-111747303	N_Shelf	-0.102	6.74E-12
cg20124223	DIXDC1	TSS1500	chr11:111847927-111848401	N_Shore	0.102	1.41E-10
cg24216770	DLGAP4	Body	chr20:35089448-35089998	S_Shore	0.138	1.31E-18
cg00593243	DUSP1	Body	chr5:172197482-172199606	N_Shore	0.127	1.15E-11
cg00648883	EEF1DP3	Body	chr13:32526882-32527373	N_Shelf	-0.122	1.80E-14
cg18454133	EFS	TSS1500	chr14:23834435-23835947	Island	0.104	8.12E-10
cg00288598	EIF2C2	Body	chr8:141559164-141559368	N_Shelf	-0.187	1.54E-15
cg11146034	ELK3	5'UTR	chr12:96588665-96589145	S_Shore	-0.128	4.95E-13

cg22876356	ELK3	5'UTR	chr12:96588665-96589145	S_Shelf	-0.12	1.53E-12
cg25849281	ENO1	5'UTR	chr1:8938098-8939409	N_Shore	-0.108	6.53E-13
cg14706739	EPB49	5'UTR	chr8:21914275-21914525	S_Shore	0.112	1.58E-13
cg21647035	EPHA2	Body	chr1:16475111-16475324	N_Shore	0.135	1.89E-15
cg10532908	ЕРНВ6	5'UTR	chr7:142551879-142553186	S_Shelf	0.1	7.39E-17
cg00328720	EXTL3	5'UTR	chr8:28558588-28559960	S_Shelf	-0.158	8.12E-15
cg11635053	FAM131A	5'UTR	chr3:184056419-184056671	N_Shore	0.114	3.34E-13
cg12515659	FAM134B	Body	chr5:16616509-16617428	N_Shelf	0.158	0.00342
cg07290269	FAM60A	TSS1500	chr12:31476717-31479466	S_Shore	0.111	1.40E-11
cg02158978	FBRSL1	Body	chr12:133135293-133135722	N_Shore	-0.105	7.59E-17
cg00842076	FOXN3	5'UTR	chr14:89882421-89884278	N_Shore	0.104	1.42E-10
cg12196406	FXYD1	TSS200	chr19:35632356-35632572	N_Shelf	0.122	2.03E-18
cg08202226	GATAD2B	TSS1500	chr1:153894837-153895921	S_Shore	-0.131	5.08E-14
cg17967059	GJB2	Body	chr13:20766208-20767779	N_Shelf	-0.134	4.75E-12
cg04452195	GJB2	3'UTR	chr13:20766208-20767779	N_Shelf	-0.102	5.36E-11
cg08461840	GNG7	5'UTR	chr19:2622522-2622859	N_Shore	-0.113	1.53E-12
cg03595161	GPER	5'UTR	chr7:1126578-1126910	S_Shore	0.102	7.97E-14
cg11049075	HDAC5	5'UTR	chr17:42200521-42201543	N_Shore	0.126	2.03E-18
cg07803375	HEATR2	Body	chr7:813627-814392	N_Shelf	0.151	1.18E-13
cg03143486	HEATR2	Body	chr7:813627-814392	N_Shelf	0.158	1.72E-16
cg03234702	HIST1H3E	1stExon	chr6:26225386-26225790	Island	0.102	1.15E-08
cg26645432	HLA-DPB1	Body	chr6:33048416-33048814	Island	0.127	4.01E-10
cg16345566	HLA-DQB1	Body	chr6:32632158-32633027	S_Shore	-0.116	0.00318
cg20688651	HMGA2	Body	chr12:66217627-66220181	S_Shore	-0.103	8.94E-11
cg10773266	HNRNPF	5'UTR	chr10:43891546-43892917	S_Shelf	-0.104	1.80E-14
cg06786372	HOXA2	Body	chr7:27143181-27143479	N_Shore	0.102	3.41E-08
cg02803819	HOXA2	Body	chr7:27143181-27143479	N_Shelf	0.105	1.11E-07
cg08101036	HOXA3	5'UTR	chr7:27154999-27155426	N_Shore	0.115	1.73E-10
cg00921266	HOXA3	5'UTR	chr7:27154999-27155426	N_Shore	0.12	3.35E-10
cg01370449	HOXA5	TSS200	chr7:27182613-27185562	Island	0.101	1.18E-08
cg09549073	HOXA5	5'UTR	chr7:27182613-27185562	Island	0.104	2.02E-08
cg23936031	HOXA5	1stExon	chr7:27182613-27185562	Island	0.104	9.73E-08
cg12128839	HOXA5	TSS200	chr7:27182613-27185562	Island	0.116	1.46E-08
cg04863892	HOXA5	TSS200	chr7:27182613-27185562	Island	0.12	4.00E-08
cg02248486	HOXA5	1stExon	chr7:27182613-27185562	Island	0.122	4.95E-08
cg19759481	HOXA5	TSS200	chr7:27182613-27185562	Island	0.122	9.53E-08
cg12024104	IFF01	Body	chr12:6664425-6665336	N_Shore	0.147	1.04E-16

cg21686213	IFITM1	3'UTR	chr11:315739-316539	N_Shore	-0.117	2.93E-11
cg04582010	IFITM1	TSS1500	chr11:310728-311419	S_Shore	-0.106	2.60E-11
cg20566897	IFITM1	TSS1500	chr11:315739-316539	N_Shelf	-0.105	1.92E-10
cg15480336	ISLR	TSS1500	chr15:74467613-74467892	N_Shelf	0.106	1.84E-15
cg02225720	ITGAE	Body	chr17:3626924-3627839	N_Shelf	-0.115	5.48E-13
cg17775079	JMJD1C	Body	chr10:65224870-65225887	N_Shore	0.125	6.49E-15
cg15695155	KDM2B	Body	chr12:121975028-121976140	N_Shore	0.134	2.71E-15
cg18213495	KIF13A	Body	chr6:17987415-17988405	N_Shelf	0.108	1.63E-11
cg23018063	KLK11	TSS1500	chr19:51535218-51535475	N_Shelf	0.111	7.34E-11
cg13938098	LAMA4	TSS200	chr6:112575091-112575483	S_Shore	0.109	4.38E-16
cg14289461	LAMA4	TSS200	chr6:112575091-112575483	S_Shore	0.131	5.77E-16
cg11934419	LAMA4	TSS200	chr6:112575091-112575483	S_Shore	0.135	1.32E-17
cg26801613	LMO4	TSS1500	chr1:87793802-87795142	N_Shore	0.105	2.77E-15
cg02471028	LOC100130872	TSS1500	chr4:1202956-1203200	S_Shore	0.105	3.17E-14
cg24677036	LOC100130872-SPON2	Body	chr4:1164515-1166582	S_Shore	0.109	1.22E-12
cg04343927	LOC100130872-SPON2	Body	chr4:1164515-1166582	S_Shore	0.122	1.07E-13
cg09148852	LOC338799	Body	chr12:122235106-122235310	Island	0.115	2.58E-13
cg02317313	LOC338799	Body	chr12:122235106-122235310	Island	0.12	6.22E-12
cg05146756	LOC554202	Body	chr9:21559133-21559816	N_Shore	-0.106	6.60E-06
cg21715751	LOC80054	Body	chr19:33792061-33794944	S_Shore	0.144	1.01E-15
cg06641366	LRRC8C	TSS1500	chr1:90098230-90099292	N_Shore	0.135	2.90E-12
cg17174764	LRRN4CL	TSS200	chr11:62455073-62455868	S_Shore	0.1	6.51E-10
cg26348348	LYPD1	1stExon	chr2:133426652-133428870	S_Shore	-0.139	6.41E-17
cg21261487	MBP	5'UTR	chr18:74824149-74824414	S_Shore	-0.129	1.17E-12
cg15352683	MBP	3'UTR	chr18:74691262-74691466	Island	-0.109	8.37E-11
cg11668844	MCF2L	Body	chr13:113656116-113656379	N_Shore	0.131	7.68E-16
cg23679344	MED1	3'UTR	chr17:37557366-37558982	S_Shore	-0.176	1.18E-17
cg12695612	MFAP2	TSS1500	chr1:17306551-17307363	S_Shore	-0.105	1.02E-12
cg11201447	MIR1204	TSS200	chr8:128806081-128806899	S_Shore	-0.111	3.76E-10
cg02821342	MKLN1	TSS1500	chr7:130794689-130795032	N_Shore	0.116	3.17E-09
cg11839415	MPL	Body	chr1:43814305-43815277	Island	0.105	8.26E-08
cg27038717	MTSS1	TSS1500	chr8:125739685-125741266	S_Shore	0.101	8.12E-15
cg14093103	NFIA	Body	chr1:61548753-61549564	N_Shelf	0.107	4.12E-11
cg06145669	NR4A3	5'UTR	chr9:102590742-102591303	N_Shore	-0.118	4.87E-14
cg05280527	NRXN3	3'UTR	chr14:80328014-80328331	S_Shore	-0.113	1.45E-12
cg03319315	PAOX	Body	chr10:135203101-135203316	N_Shore	-0.104	2.13E-11
cg26541780	PAQR6	TSS200	chr1:156215368-156215899	S_Shelf	0.147	7.93E-16

cg17117459	PARP4	5'UTR	chr13:25086522-25087067	N_Shore	-0.135	7.15E-11
cg20765408	PARP4	5'UTR	chr13:25086522-25087067	N_Shore	-0.105	1.88E-09
cg04128884	PCGF3	5'UTR	chr4:714340-714580	Island	-0.103	6.33E-07
cg16150047	PDE4DIP	Body	chr1:145039740-145040180	S_Shelf	-0.109	2.28E-10
cg09026722	PEAR1	5'UTR	chr1:156863415-156863711	S_Shelf	-0.127	2.34E-11
cg10517290	PGS1	Body	chr17:76374443-76375201	S_Shelf	-0.144	2.24E-15
cg20567768	PHYHIP	Body	chr8:22079100-22079346	S_Shelf	0.101	5.89E-11
cg08456334	PI4KB	1stExon	chr1:151300522-151300724	N_Shore	0.1	1.21E-10
cg16664523	PIK3R1	Body	chr5:67584213-67584451	S_Shore	0.103	1.12E-11
cg01846046	PLCB3	Body	chr11:64034860-64035066	N_Shore	-0.155	3.11E-17
cg19553402	PLXNB2	TSS1500	chr22:50745415-50746125	S_Shore	0.101	9.98E-14
cg14697425	PODNL1	3'UTR	chr19:14043645-14044211	N_Shore	-0.118	2.55E-09
cg02474116	PPP1R12C	Body	chr19:55628488-55629105	N_Shelf	0.101	2.08E-13
cg05234415	PPP1R14A	Body	chr19:38746638-38747379	N_Shelf	0.126	1.48E-16
cg18575532	PPP1R1B	5'UTR	chr17:37783314-37783919	S_Shore	0.108	1.66E-10
cg24520381	PPP1R1B	TSS200	chr17:37783314-37783919	S_Shore	0.114	1.21E-12
cg23194766	PPP2R3A	TSS1500	chr3:135684570-135685367	N_Shore	0.126	4.55E-14
cg19064302	PRDM1	Body	chr6:106534136-106534385	S_Shore	-0.112	1.62E-12
cg02108623	PRDM1	Body	chr6:106534136-106534385	S_Shore	-0.106	2.68E-07
cg15262954	PRIC285	Body	chr20:62193966-62198985	Island	-0.114	1.32E-10
cg13235366	PTPRF	Body	chr1:44031286-44031853	S_Shore	0.102	8.05E-13
cg10881128	PTPRF	Body	chr1:44031286-44031853	Island	0.136	5.31E-10
cg11094248	RARA	Body	chr17:38497527-38498963	N_Shelf	-0.14	9.14E-15
cg10592478	RARG	Body	chr12:53613716-53615103	N_Shore	0.11	1.87E-10
cg19645616	RAVER1	TSS1500	chr19:10443688-10446022	Island	0.103	2.03E-10
cg10796749	RBP7	TSS1500	chr1:10057121-10058108	N_Shore	-0.144	9.79E-19
cg20413202	RBP7	TSS1500	chr1:10057121-10058108	N_Shore	-0.118	1.44E-16
cg26037504	RDH5	TSS1500	chr12:56109798-56110298	S_Shelf	0.101	2.35E-14
cg02192520	RDH5	1stExon	chr12:56109798-56110298	S_Shelf	0.146	3.63E-17
cg10863207	RFFL	5'UTR	chr17:33416129-33416578	N_Shelf	-0.157	4.57E-15
cg10464462	RFFL	TSS1500	chr17:33416129-33416578	S_Shore	-0.142	3.89E-16
cg18109874	RFX1	5'UTR	chr19:14116532-14118017	N_Shore	0.127	1.74E-16
cg16258854	RHOB	1stExon	chr2:20646428-20647988	S_Shore	0.125	1.63E-11
cg25432336	RHOB	1stExon	chr2:20646428-20647988	S_Shore	0.125	5.10E-10
cg10329345	RNF220	Body	chr1:45082739-45083285	Island	0.101	1.31E-09
cg16438182	RPTOR	Body	chr17:78915562-78915882	S_Shore	0.103	1.96E-12
cg08957564	RUNDC2A	Body	chr16:12070257-12070870	S_Shore	0.103	1.76E-13

cg02716776	S1PR4	TSS1500	chr19:3178741-3179986	N_Shore	-0.215	3.52E-18
cg00431602	SAT1	TSS1500	chrX:23801055-23801724	N_Shore	-0.115	4.27E-08
cg07573872	SBNO2	Body	chr19:1122475-1123287	S_Shelf	-0.138	3.07E-18
cg22597120	SBNO2	Body	chr19:1108394-1109610	Island	-0.12	2.71E-13
cg03598185	SCAMP4	Body	chr19:1911923-1913406	S_Shore	-0.113	5.34E-08
cg23994112	SEPT9	5'UTR	chr17:75368688-75370506	S_Shelf	0.103	5.25E-12
cg07953015	SEPW1	3'UTR	chr19:48281585-48282351	S_Shelf	0.125	1.40E-15
cg04167854	SERGEF	Body	chr11:18034129-18035268	N_Shelf	0.118	1.33E-13
cg23313665	SH2D3C	Body	chr9:130516407-130517849	Island	0.103	4.45E-09
cg19726408	SH3PXD2A	Body	chr10:105428505-105428713	Island	0.101	9.05E-13
cg18735015	SH3PXD2A	Body	chr10:105428505-105428713	Island	0.115	7.02E-13
cg09178384	SH3RF1	TSS1500	chr4:170191357-170192844	S_Shore	0.122	2.37E-15
cg14282004	SIX5	Body	chr19:46270699-46275167	Island	0.102	2.71E-11
cg21853021	SLC22A18AS	Body	chr11:2923301-2923817	N_Shelf	-0.154	1.13E-11
cg23190089	SLC22A18AS	Body	chr11:2923301-2923817	N_Shelf	-0.126	9.17E-09
cg18419977	SLC22A18AS	Body	chr11:2923301-2923817	N_Shelf	-0.119	5.92E-09
cg18458509	SLC22A18AS	Body	chr11:2923301-2923817	N_Shelf	-0.117	2.15E-09
cg13485320	SLC22A18AS	Body	chr11:2923301-2923817	N_Shelf	-0.101	9.35E-12
cg14646244	SLC26A4	TSS1500	chr7:107301205-107302416	N_Shore	-0.106	1.08E-12
cg22330763	SLC29A1	5'UTR	chr6:44191278-44191872	S_Shelf	0.154	2.85E-17
cg03670302	SLC2A4	3'UTR	chr17:7193597-7193813	N_Shelf	-0.1	1.69E-09
cg21663431	SLC44A2	Body	chr19:10735999-10736396	Island	0.104	5.45E-10
cg10402698	SMAD6	TSS1500	chr15:66993543-66996571	S_Shelf	0.102	1.07E-13
cg01912455	SMARCB1	TSS1500	chr22:24129097-24129697	N_Shore	0.135	1.35E-18
cg08593157	SMCR5	TSS1500	chr17:17685016-17687240	N_Shore	0.101	1.34E-11
cg03785076	SNED1	TSS1500	chr2:241937716-241938468	N_Shore	0.107	4.88E-13
cg16937168	SNED1	TSS1500	chr2:241937716-241938468	N_Shore	0.109	9.93E-13
cg10566776	SNHG11	TSS1500	chr20:37075227-37075854	N_Shore	-0.133	6.18E-13
cg22407942	SNORD93	TSS1500	chr7:22893794-22894577	S_Shore	-0.124	3.49E-10
cg04907244	SNORD93	TSS1500	chr7:22893794-22894577	S_Shore	-0.11	5.64E-09
cg03850957	SNRPB2	Body	chr20:16710507-16711115	S_Shelf	-0.133	6.03E-16
cg07886195	SPC24	Body	chr19:11266230-11266726	N_Shelf	0.101	1.55E-09
cg01539849	SPI1	3'UTR	chr11:47376651-47377236	Island	0.103	2.77E-09
cg26756782	SPIRE2	Body	chr16:89920497-89920740	S_Shore	-0.103	4.74E-13
cg13033858	SSH1	Body	chr12:109251205-109251586	N_Shelf	-0.159	1.68E-12
cg20388732	STAT5A	TSS200	chr17:40440188-40441014	N_Shore	0.111	7.19E-10
cg10460001	STEAP3	Body	chr2:120005514-120005756	Island	-0.101	1.40E-06

cg21920221	STK10	Body	chr5:171614430-171615939	N_Shore	-0.21	9.79E-19
cg02711479	STK40	5'UTR	chr1:36851089-36851873	N_Shelf	0.108	1.27E-06
cg18721397	SUB1	TSS1500	chr5:32585603-32586365	N_Shore	-0.169	1.94E-17
cg12748890	SYTL1	Body	chr1:27675919-27678016	Island	0.103	5.91E-08
cg03607573	TAF1D	Body	chr11:93474085-93475075	N_Shelf	-0.102	1.55E-11
cg03438552	TAP2	Body	chr6:32806284-32806669	N_Shore	-0.103	2.42E-14
cg00776080	TENC1	5'UTR	chr12:53440579-53440840	S_Shore	0.119	1.04E-16
cg11826961	THRA	5'UTR	chr17:38219084-38219880	S_Shore	0.131	1.97E-17
cg05874176	TLK1	5'UTR	chr2:172016538-172017028	S_Shelf	-0.139	4.78E-15
cg08469215	TMEM79	Body	chr1:156261199-156261425	Island	0.105	2.10E-11
cg14087413	TMEM8B	Body	chr9:35846310-35846638	S_Shore	-0.12	3.34E-13
cg09043214	TNFRSF1A	Body	chr12:6438272-6438931	S_Shelf	-0.101	2.43E-09
cg12353589	TOLLIP	Body	chr11:1311351-1311619	N_Shore	-0.107	1.55E-09
cg22100563	TPD52L2	Body	chr20:62509163-62509369	N_Shelf	-0.182	7.66E-19
cg10506618	TRAK1	Body	chr3:42243930-42244371	S_Shelf	0.106	3.30E-08
cg01997599	TRPM4	Body	chr19:49685863-49686233	S_Shelf	0.105	0.00131
cg23999170	TSPAN2	Body	chr1:115631850-115632584	N_Shelf	0.136	1.01E-09
cg13104938	TSPAN4	TSS1500	chr11:842293-843396	S_Shore	0.11	2.47E-15
cg10481202	TUBA1A	Body	chr12:49582096-49582881	N_Shore	0.113	8.37E-11
cg24861866	TUBGCP2	Body	chr10:135103295-135103554	S_Shelf	-0.109	5.48E-13
cg13860281	VOPP1	Body	chr7:55639277-55640599	N_Shore	-0.119	1.01E-12
cg21775279	XKR8	TSS1500	chr1:28286019-28286838	N_Shore	-0.123	1.92E-14
cg07140459	XRN1	Body	chr3:142166202-142167026	N_Shore	-0.129	5.62E-13
cg24452821	ZBTB16	Body	chr11:113953620-113953839	Island	-0.108	3.19E-11
cg00859858	ZC3H12A	Body	chr1:37939723-37940650	S_Shelf	-0.178	8.36E-16
cg17478979	ZC3H12D	Body	chr6:149771836-149772855	Island	0.101	1.96E-07
cg00283857	ZDHHC14	Body	chr6:158013812-158014256	S_Shelf	0.116	1.31E-09
cg03509898	ZFYVE21	Body	chr14:104193901-104194627	N_Shelf	0.107	1.43E-12
cg25580656	ZFYVE21	Body	chr14:104193901-104194627	S_Shelf	0.135	7.59E-13
cg01105418	ZNF238	1stExon	chr1:244213397-244213619	S_Shore	0.137	7.93E-16
cg17970299	ZNF385A	Body	chr12:54772687-54773028	Island	0.126	1.36E-09
cg03489712	ZYX	TSS1500	chr7:143077469-143079169	N_Shore	-0.114	1.12E-11

Приложение, таб.	лица 6. Графы с максимальной МІ для ДЭГ					
ДЭГ на вход	Узлы подграфа	Количество	МІ ДЭГ	MI	FDR	FDR
		подграфе		трафа	10018 #1	#2
A2ML1	A2ML1, JUNB, NFKB1, STAT3, ELF3, STAT2	6	0.167	0.206	0.007	0.007
AADACL3	AADACL3, YY1, FOXO1, AR, GATA6, NR3C2, VEZF1, BHLHE41	8	0.182	0.268	0.007	0.007
ACADL	ACADL, GATA6, GL12, NR1D1, NEUROD2	5	0.143	0.285	0.007	0.007
ACKR2	ACKR2, STAT3, NFKB1, STAT1, STAT2, MXD1, EHF	7	0.133	0.217	0.007	0.007
ACOT1	ACOT1, ESR1, NR1D1, KLF15, GLI2, NEUROD2	6	0.128	0.292	0.007	0.007
ACOX2	ACOX2, AR, NR1D1, GLI2, NEUROD2, GATA6, ZBTB4, FOXJ2	8	0.211	0.312	0.007	0.007
ACRV1	ACRV1, STAT3, EHF, NFKB1, ID1, MTF1	6	0.099	0.209	0.007	0.007
ACSBG1	ACSBG1, ESR1, NR1D1, KLF15, HOXB5, LHX3, FOXO1, TCF7L1	8	0.178	0.287	0.007	0.007
ACSM3	ACSM3, ESR1, FOXA1, TCF7L1, KLF15, CREB3L1, AR, CREB3L4, ALX4, HAND2	10	0.146	0.276	0.007	0.007
ACSM6	ACSM6, ESR1, HOXB5, DMRT2, FOXA1, TFDP2, HSF4, AR	8	0.128	0.257	0.007	0.007
ACTA1	ACTA1, AR, SP4, KLF15, TCF7L1	5	0.151	0.276	0.007	0.007
ACTC1	ACTC1, ESR1, KLF15, FOXA1, TCF7L1, PPARG	6	0.152	0.26	0.007	0.007
ACTG2	ACTG2, AR, ZBTB4, NRF1, FOXJ2, DMRT2, FOXO1, KLF15	8	0.178	0.317	0.007	0.007
ADAM23	ADAM23, LEF1, E2F8, NFKB1, STAT3, EHF	6	0.152	0.194	0.007	0.007
ADAMTS16	ADAMTS16, ESR1, FOXA1, KLF15, GL11, TCF7L2, CREB3L1	7	0.083	0.27	0.007	0.007
ADAMTS4	ADAMTS4, RCOR1, NFKB1, EHF, ZNF217, ARNTL2, STAT1	7	0.092	0.194	0.007	0.007
ADAMTSL3	ADAMTSL3, NRF1, ZBTB4, ID4, GATA3, VEZF1	6	0.174	0.3	0.007	0.007
ADAP2	ADAP2, E2F8, EHF	3	0.201	0.251	0.007	0.007
ADCY8	ADCY8, GATA6, KLF15, FOXJ2, SMAD4	5	0.161	0.261	0.007	0.007
ADCYAP1	ADCYAP1, TP63, STAT3, EHF, MTF1	5	0.112	0.185	0.007	0.007
ADGRB1	ADGRB1, SPDEF, NR1D1, GATA3, NRF1, KLF15, FOXO1	7	0.144	0.274	0.007	0.007
ADGRF1	ADGRF1, STAT3, EHF, TP63, NFKB1, MTF1, RCOR1, GRHL1	8	0.026	0.185	0.007	0.007
ADH1B	ADH1B, FOXA1, ZBTB4, AR, GATA2, DMRT2	6	0.104	0.277	0.007	0.007
AGR3	AGR3, NR1D1, AR, GATA6, KLF15, FOXJ2	6	0.148	0.258	0.007	0.007
AGT	AGT, SPDEF, KLF15, GATA3, UBTF	5	0.14	0.271	0.007	0.007
AKR1B10	AKR1B10, RCOR1, NFKB1, ARNTL2, EHF	5	0.212	0.241	0.007	0.007
ALDH1L1	ALDH1L1, GATA6, KLF15, FOXA1, FOXC1, HOXB5	6	0.124	0.247	0.007	0.007
ALOX12B	ALOX12B, STAT1, NFKB1, ELF3, MTF1	5	0.136	0.218	0.007	0.007
ALOX15B	ALOX15B, ESR1, KLF15, NR1D1, GLI2, GATA3, NFIC	7	0.163	0.303	0.007	0.007
ANGPTL4	ANGPTL4, EHF, MTF1, ELF3, MXD1	5	0.116	0.209	0.007	0.007
ANKRD31	ANKRD31, LEF1, NFKB1, EHF	4	0.11	0.174	0.007	0.007
ANKRD33B	ANKRD33B, SMAD4, GLI2	3	0.3	0.306	0.007	0.007
APOBEC3A	APOBEC3A, STAT4, NFKB1, LEF1, STAT2	5	0.097	0.15	0.007	0.007

APOC1	APOC1, GATA6, NR1D1, GATA3, NCOR2, NFIC, ZBTB4	7	0.129	0.303	0.007	0.007
APOL1	APOL1, STAT1, NFKB1, STAT3, MXD1	5	0.156	0.23	0.007	0.007
APOL6	APOL6, RCOR1, NFKB1, ARNTL2, STAT1	5	0.159	0.226	0.007	0.007
AQP4	AQP4, ESR1, HOXB5, KLF15, LHX3, DMRT2, DDIT3	7	0.113	0.271	0.007	0.007
ARFGEF3	ARFGEF3, GATA2, ZBTB4, RXRA	4	0.227	0.294	0.007	0.007
ASPG	ASPG, LEF1, NFKB1, STAT2, EHF, ELF3	6	0.149	0.185	0.007	0.007
ASTN1	ASTN1, GATA3, NR1D1, GATA6, KLF15, NEUROD2, TCF7L2	7	0.074	0.298	0.007	0.007
ATOH8	ATOH8, NRF1, ZBTB4, MEF2D, PATZ1	5	0.191	0.291	0.007	0.007
ATP2B2	ATP2B2, SPDEF, KLF15, FOXO1, VEZF1, PPARG	6	0.167	0.258	0.007	0.007
AWAT2	AWAT2, PPARG, SPDEF, KLF15, HOXB5, AR, UBTF, NR1D1, TCF7L1	9	0.194	0.272	0.007	0.007
B4GALNT2	B4GALNT2, HIF1A, STAT3, PRDM1, EHF	5	0.122	0.179	0.007	0.007
BATF2	BATF2, E2F8, MTF1, EHF	4	0.142	0.194	0.007	0.007
BCL2A1	BCL2A1, TEAD4, PITX1, ID1	4	0.112	0.163	0.007	0.007
BEST2	BEST2, SPDEF, NR1D1, NRF1, GATA3, GATA6, KLF13	7	0.173	0.293	0.007	0.007
BMP3	BMP3, ESR1, TCF21, GATA6, GL12, DMRT2, NRF1	7	0.135	0.253	0.007	0.007
BRINP1	BRINP1, STAT3, STAT1, NFKB1, EHF, STAT2	6	0.127	0.187	0.007	0.007
BTBD16	BTBD16, GATA6, ZBTB4, KLF13, NFIC, UBTF	6	0.203	0.293	0.007	0.007
BTC	BTC, GLI2, TCF7L1, NRF1	4	0.286	0.319	0.007	0.007
C12orf56	C12orf56, SMAD1, NFE2L2, XBP1, CBFB, NFE2L3	6	0.089	0.152	0.007	0.007
C12orf74	C12orf74, SPIB, STAT2, STAT1, NFKB1, STAT3, EHF, ELF3	8	0.134	0.201	0.007	0.007
C14orf132	C14orf132, ZNF250, ZBTB4, GLI2	4	0.212	0.293	0.007	0.007
C15orf59	C15orf59, ZNF263, FOXJ2, GATA6, GATA3, ZBTB4	6	0.216	0.3	0.007	0.007
Clorf158	C1orf158, FOXA1, TCF7L1, GATA2, BHLHE41	5	0.126	0.243	0.007	0.007
C1QL2	C1QL2, ESR1, FOXA1, KLF15	4	0.172	0.282	0.007	0.007
C1QTNF7	C1QTNF7, GATA6, ZBTB4, KLF15, FOXO1, ESR1, FOXJ2	7	0.172	0.293	0.007	0.007
C5orf49	C5orf49, ZNF263, ZBTB4, FOXJ2	4	0.251	0.287	0.007	0.007
C6orf223	C6orf223, STAT1, NFKB1, EHF, ARNTL2	5	0.1	0.226	0.007	0.007
C9orf152	C9orf152, NCOR2, NRF1, FOXO1, NFATC1	5	0.109	0.27	0.007	0.007
C9orf84	C9orf84, LEF1, NFKB1, STAT1	4	0.098	0.182	0.007	0.007
CA6	CA6, SETDB1, GATA6, FOXO1, DMRT2, CREB3L1, TCF21	7	0.178	0.254	0.007	0.007
CA9	CA9, YY1, KLF13, FOXJ2, MEF2D, NCOR2, GLI2, ZBTB4	8	0.224	0.277	0.007	0.007
CACNA1H	CACNA1H, SPDEF, NCOR2, GLI2, RFX2, FOXO4, GLIS1	7	0.209	0.283	0.007	0.007
CACNA2D2	CACNA2D2, SMAD4, GLI2, ZKSCAN1	4	0.239	0.27	0.007	0.007
CACNB4	CACNB4, LEF1, NFKB1, E2F8, NFE2L3	5	0.141	0.201	0.007	0.007
CADM3	CADM3, UBTF, ZBTB4, NRF1, TCF7L1	5	0.222	0.315	0.007	0.007
CALML3	CALML3, CEBPB, E2F8, JUNB, MXD1, ID1	6	0.14	0.172	0.007	0.007
САМК2В	CAMK2B, SPDEF, GATA6, NR1D1, TFDP2, KLF15, NR3C2, FOXA1	8	0.227	0.294	0.007	0.007

CAMP	CAMP, E2F8, EHF, MTF1, NFKB1, TP63	6	0.144	0.201	0.007	0.007
CASP5	CASP5, E2F8, EHF, NFKB1	4	0.145	0.199	0.007	0.007
CASQ2	CASQ2, ESR1, ZBTB4, UBTF, TCF7L1, NRF1, ID4	7	0.174	0.283	0.007	0.007
CBLN1	CBLN1, FOXA1, TCF7L1, PATZ1	4	0.172	0.255	0.007	0.007
CCDC60	CCDC60, IRF1, NFKB1, STAT2, SPIB, IRF8	6	0.113	0.172	0.007	0.007
CCER2	CCER2, SPDEF, KLF15, ESR1	4	0.137	0.248	0.007	0.007
CCKBR	CCKBR, ESR1, PPARA, GATA6, GATA3, NR1D1	6	0.166	0.271	0.007	0.007
CCL18	CCL18, SOX2, JUNB, ID1, NFKB1, BATF, STAT3	7	0.096	0.153	0.007	0.007
CCL2	CCL2, RCOR1, NFKB1, EHF, STAT2, ZNF217, STAT1	7	0.095	0.202	0.007	0.007
CCL20	CCL20, STAT3, STAT1, NFKB1, NFE2L3	5	0.135	0.19	0.007	0.007
CCL22	CCL22, STAT1, NFKB1, STAT3, IRF9	5	0.127	0.194	0.007	0.007
CCL3L3	CCL3L3, BATF, NFKB1, STAT1, IRF1, ID1	6	0.109	0.152	0.007	0.007
CCL4	CCL4, RCOR1, NFKB1, EHF, MTF1, NFE2L3, E2F8	7	0.128	0.212	0.007	0.007
CCL4L2	CCL4L2, PAX5, STAT2, IRF9, NFKB1, MTF1, STAT1, RCOR1, EHF, PRDM4, ZNF217	11	0.076	0.158	0.007	0.007
CCL7	CCL7, CEBPB, IRF1, HOXB13	4	0.111	0.158	0.007	0.007
CCL8	CCL8, ATF1, LEF1, IKZF1, CTCF, EOMES, IRF2, E2F8	8	0.097	0.134	0.007	0.007
CCNE1	CCNE1, EHF, E2F8	3	0.241	0.252	0.007	0.007
CCR7	CCR7, STAT1, NFKB1, EHF, STAT2	5	0.153	0.242	0.007	0.007
CD177	CD177, SOX2, LEF1, NFKB1, EHF, CREM, MECOM	7	0.099	0.151	0.007	0.007
CD2	CD2, SPIB, NFKB1, STAT2, IRF9, STAT1, BATF3	7	0.106	0.194	0.007	0.007
CD274	CD274, EHF, NFKB1, MTF1	4	0.068	0.23	0.007	0.007
CD28	CD28, RCOR1, NFKB1, EHF, STAT2, ARNTL2	6	0.151	0.22	0.007	0.007
CD38	CD38, RCOR1, NFKB1, MTF1, EHF, STAT1	6	0.156	0.228	0.007	0.007
CD7	CD7, LEF1, STAT2, STAT1, NFKB1, IRF1, NFKB2	7	0.139	0.185	0.007	0.007
CD80	CD80, JUNB, ELF3, STAT2, PITX1	5	0.16	0.179	0.007	0.007
CDH12	CDH12, BCL6, ZBTB4, GATA6, TFDP2, GATA3	6	0.202	0.271	0.007	0.007
CDHR1	CDHR1, UBTF, ZBTB4, RXRA, NR1D1, TCF7L1, NRF1, PATZ1	8	0.167	0.283	0.007	0.007
CES1	CES1, NFIC, ZBTB4, NFATC1, NCOR2	5	0.185	0.297	0.007	0.007
CHAC1	CHAC1, E2F8, MTF1, EHF	4	0.101	0.204	0.007	0.007
CHP2	CHP2, UBTF, GATA6, KLF13	4	0.247	0.272	0.007	0.007
CHRM1	CHRM1, GATA6, NEUROD2, KLF15	4	0.196	0.298	0.007	0.007
CHRM4	CHRM4, ESR1, ZBTB4, FOXJ2, KLF13	5	0.207	0.301	0.007	0.007
CHRNA2	CHRNA2, ESR1, KLF15, FOXA1, GLI2, PPARG	6	0.131	0.26	0.007	0.007
CHRNA9	CHRNA9, STAT1, NFKB1, STAT2, EHF	5	0.131	0.213	0.007	0.007
CHST1	CHST1, LEF1, STAT1, EHF, NFKB1	5	0.125	0.188	0.007	0.007
CIDEA	CIDEA, ESR1, TCF7L1, KLF15, NR1D1, NR2F1, GATA6	7	0.112	0.292	0.007	0.007
CIDEC	CIDEC, SPDEF, AR, KLF15, ZKSCAN1, FOXO1	6	0.109	0.283	0.007	0.007

CILP	CILP, NRF1, ZBTB4, FOXJ2, FOXO1, GATA3, TCF7L1, NCOR2	8	0.18	0.282	0.007	0.007
CILP2	CILP2, KLF9, HAND2, SPDEF, KLF15, HOXA5, AR	7	0.112	0.252	0.007	0.007
СКМ	CKM, AR, SP4, TCF7L1	4	0.195	0.254	0.007	0.007
CKMT1B	CKMT1B, LEF1, NFKB1, E2F8, EHF	5	0.096	0.181	0.007	0.007
CLDN23	CLDN23, GATA6, PPARA, KLF15, KLF13, NR1D1	6	0.212	0.294	0.007	0.007
CLDN3	CLDN3, GL12, NR1D1, SMARCC2, NRF1, TCF7L1, NCOR2, AR, ZNF263	9	0.126	0.268	0.007	0.007
CLDN8	CLDN8, GATA3, ZBTB4	3	0.166	0.285	0.007	0.007
CLEC3A	CLEC3A, TEAD4, BHLHE40, STAT3, ELF3, ZNF217, EHF	7	0.1	0.144	0.007	0.007
CLEC4C	CLEC4C, LEF1, NFKB1, STAT1	4	0.139	0.189	0.007	0.007
CLEC7A	CLEC7A, RCOR1, NFKB1, ARNTL2, E2F8, EHF, STAT1	7	0.171	0.228	0.007	0.007
CLLU1	CLLU1, STAT3, NFKB1, EHF	4	0.141	0.199	0.007	0.007
CLLU10S	CLLU1OS, RCOR1, NFKB1, STAT2, EHF, MTF1	6	0.134	0.194	0.007	0.007
СМРК2	CMPK2, EHF, NFKB1, MTF1, MXD1	5	0.133	0.216	0.007	0.007
CNDP1	CNDP1, SPDEF, KLF15, DMRT2	4	0.205	0.266	0.007	0.007
CNGA1	CNGA1, GATA3, ZBTB4, NRF1, FOXO1, FOXJ2	6	0.219	0.306	0.007	0.007
CNGB1	CNGB1, SPIB, STAT3, NFKB1	4	0.111	0.164	0.007	0.007
CNN1	CNN1, AR, ZBTB4, GATA6, FOXJ2	5	0.179	0.289	0.007	0.007
CNTFR	CNTFR, ZNF250, NRF1, FOXJ2, ZBTB4, TFDP2, GATA6, KLF15	8	0.253	0.287	0.007	0.007
CNTN2	CNTN2, AR, ZBTB4, ID4	4	0.191	0.268	0.007	0.007
CPNE6	CPNE6, GATA6, KLF15, GATA3	4	0.165	0.274	0.007	0.007
CRABP2	CRABP2, RCOR1, NFKB1, EHF, ZNF217	5	0.169	0.216	0.007	0.007
CRAT	CRAT, NCOR2, KLF13, NFATC1, ZBTB4, MEF2D	6	0.126	0.29	0.007	0.007
CSMD1	CSMD1, SMAD4, PPARA, GATA6, NRF1	5	0.179	0.245	0.007	0.007
CST6	CST6, AR, ZBTB4, MEF2D, NR1D1, GATA6, GATA3, GLI2	8	0.22	0.298	0.007	0.007
CSTA	CSTA, RCOR1, NFKB1, EHF, MTF1, MXD1	6	0.097	0.213	0.007	0.007
CTD-3088G3.8	CTD-3088G3.8, ESR1, GLI2, KLF15	4	0.185	0.293	0.007	0.007
CUX2	CUX2, ESR1, GL11, NR1D1, BHLHE41, KLF15, DMRT2, TCF7L1, GATA6	9	0.148	0.292	0.007	0.007
CXCL1	CXCL1, LEF1, NFKB1, EHF	4	0.059	0.177	0.007	0.007
CXCL10	CXCL10, TP63, STAT1, EHF, RCOR1, ARNTL2, GRHL1, NFKB1	8	0.078	0.182	0.007	0.007
CXCL11	CXCL11, STAT1, STAT3, NFKB1, MTF1, TOX4, EHF	7	0.067	0.175	0.007	0.007
CXCL2	CXCL2, STAT2, IRF9, STAT1	4	0.145	0.193	0.007	0.007
CXCL6	CXCL6, EGR1, MTF1, E2F8, EHF, STAT3	6	0.04	0.162	0.007	0.007
CXCL8	CXCL8, JUNB, PITX1, CEBPB, IRF1, NFKB1	6	0.075	0.158	0.007	0.007
CXCR2	CXCR2, TP63, RCOR1, NFKB1, ARNTL2, STAT3, EHF	7	0.158	0.207	0.007	0.007
CXCR4	CXCR4, RCOR1, NFKB1, STAT2, STAT1	5	0.152	0.22	0.007	0.007
CYP1A1	CYP1A1, ESR1, GATA3, KLF15, TCF7L1, KLF13, NR2F1	7	0.066	0.203	0.007	0.007
CYP1A2	CYP1A2, GATA3, NFIC, GLI2, NFATC1, RFX2	6	0.127	0.252	0.007	0.007

CYP24A1	CYP24A1, LEF1, NFKB1, STAT2	4	0.147	0.192	0.007	0.007
CYP4B1	CYP4B1, GATA6, ZBTB4, FOXJ2, PPARA, NRF1, ARNT	7	0.204	0.329	0.007	0.007
CYP4F8	CYP4F8, ESR1, HOXB5, FOXA1, DMRT2, TFDP2, NR1D1, BHLHE41, TCF21	9	0.111	0.275	0.007	0.007
DBX2	DBX2, SPDEF, KLF15, HOXB5, NR1D1	5	0.161	0.265	0.007	0.007
DCD	DCD, ZKSCAN1, TCF7L2, NRF1, SMAD4	5	0.105	0.223	0.007	0.007
DDC	DDC, ZNF250, HOXC6, NFE2L1, VEZF1, FOXJ2	6	0.109	0.233	0.007	0.007
DDX25	DDX25, NFATC1, ZBTB4, PATZ1, NCOR2, UBTF	6	0.146	0.261	0.007	0.007
DDX58	DDX58, EHF, NFKB1, IRF9, STAT1	5	0.165	0.233	0.007	0.007
DDX60	DDX60, MXD1, NFE2L3, STAT2, LEF1	5	0.131	0.178	0.007	0.007
DES	DES, SPDEF, HOXB5, DMRT2	4	0.225	0.271	0.007	0.007
DHRS2	DHRS2, GATA3, MEF2D, NR1D1, PATZ1, DBP	6	0.156	0.274	0.007	0.007
DLK1	DLK1, AR, SPDEF, TCF7L2, KLF15, HOXB5, NR1D1	7	0.085	0.25	0.007	0.007
DNAH8	DNAH8, SPDEF, KLF15, PATZ1, FOXO1, BHLHE41, AR, DMRT2, HAND2, PPARG	10	0.131	0.294	0.007	0.007
DOK7	DOK7, GATA3, ZBTB4, NFIC, KLF13, NFATC1	6	0.145	0.276	0.007	0.007
DSC2	DSC2, LEF1, NFKB1, E2F8, MTF1, STAT1	6	0.095	0.191	0.007	0.007
DSG3	DSG3, E2F8, EHF, NFKB1, IRF9	5	0.204	0.233	0.007	0.007
DUSP9	DUSP9, STAT3, EHF, NFKB1, STAT2, STAT1	6	0.09	0.189	0.007	0.007
DYNAP	DYNAP, TEAD4, PITX1, JUNB, ID1, ELF3, TP73, STAT2	8	0.098	0.166	0.007	0.007
EDA	EDA, SP4, ZKSCAN1, NR2F1, GLI2	5	0.239	0.273	0.007	0.007
EHF	EHF, NFKB1, STAT1, ARNTL2	4	0.223	0.242	0.007	0.007
ELF3	ELF3, EHF, NFKB1, MTF1	4	0.146	0.235	0.007	0.007
ELOVL3	ELOVL3, ESR1, KLF15, NR1D1, GL12, GATA3, NRF1	7	0.176	0.316	0.007	0.007
EMILIN3	EMILIN3, SPDEF, ESR1, TCF7L1, AR	5	0.137	0.27	0.007	0.007
ENHO	ENHO, PPARA, NRF1, FOXJ2	4	0.167	0.27	0.007	0.007
ENKUR	ENKUR, EHF, XBP1, STAT1, STAT3	5	0.148	0.199	0.007	0.007
ENPP5	ENPP5, GATA3, SMAD4, GLI2, NR3C2	5	0.173	0.296	0.007	0.007
EPSTI1	EPSTI1, EHF, NFKB1, STAT3	4	0.117	0.226	0.007	0.007
ERBB4	ERBB4, NRF1, ZNF250, KLF13, ZBTB4	5	0.198	0.264	0.007	0.007
ERC2	ERC2, LEF1, NFKB1, STAT1, STAT2	5	0.127	0.185	0.007	0.007
ETNK2	ETNK2, UBTF, ZBTB4, KLF13	4	0.234	0.297	0.007	0.007
FA2H	FA2H, GATA6, NR1D1, KLF15, ZBTB4	5	0.13	0.288	0.007	0.007
FABP7	FABP7, AR, GL11, SMAD4, ZNF84, GL12, ZKSCAN1, NR3C2, KLF15, ID4, UBTF, ZNF263, PBX3	13	0.11	0.285	0.007	0.007
FADS1	FADS1, NR1D1, UBTF, SP2, RXRA, GLI2	6	0.184	0.277	0.007	0.007
FADS2	FADS2, AR, NR1D1, BHLHE41, FOXA1, KLF15, DMRT2	7	0.171	0.285	0.007	0.007
FAM166B	FAM166B, AR, ZBTB4, GATA6	4	0.216	0.308	0.007	0.007
FAM227A	FAM227A, RXRA, PATZ1, FOXJ2, NCOR2, ZBTB4, MEF2D, GATA3, KLF13	9	0.159	0.28	0.007	0.007
FAM43A	FAM43A, TP63, ARNTL2, NFKB1	4	0.166	0.196	0.007	0.007
--------	---	----	-------	-------	-------	-------
FAM83A	FAM83A, STAT3, EHF, NFKB1, RCOR1	5	0.135	0.204	0.007	0.007
FAR2	FAR2, TCF7L1, FOXA1, AR, PATZ1	5	0.145	0.253	0.007	0.007
FBP1	FBP1, GATA6, GLI2, ZBTB4, UBTF, PATZ1	6	0.156	0.263	0.007	0.007
FBXO45	FBXO45, E2F8, EHF	3	0.212	0.234	0.007	0.007
FCHSD1	FCHSD1, STAT1, NFKB1, STAT2	4	0.132	0.222	0.007	0.007
FCRL3	FCRL3, ID1, JUNB, NFKB1, E2F2, STAT3	6	0.112	0.178	0.007	0.007
FGFBP2	FGFBP2, DLX4, UBTF, ZBTB4, PPARA, RXRA, GATA3, PATZ1, NCOR2	9	0.162	0.271	0.007	0.007
FLNC	FLNC, GATA3, ZBTB4, NFATC1, CAMTA2	5	0.182	0.308	0.007	0.007
FOXE1	FOXE1, RCOR1, NFKB1, E2F8, MTF1	5	0.168	0.212	0.007	0.007
FPR2	FPR2, JUNB, PITX1, E2F2, NFKB1	5	0.085	0.162	0.007	0.007
FRMD7	FRMD7, ESR1, ZNF83, KLF15, PPARG	5	0.177	0.265	0.007	0.007
FUT7	FUT7, SPIB, NFKB2, JUNB, STAT3, BATF	6	0.14	0.194	0.007	0.007
GABBR2	GABBR2, ZNF263, PPARG, FOXO1, AR, NR1D1, DMRT2, UBTF, BHLHE41, NFIC	10	0.17	0.314	0.007	0.007
GAL	GAL, AR, NR1D1, GLI2, KLF15, NEUROD2	6	0.14	0.278	0.007	0.007
GBP1	GBP1, STAT1, NFKB1, ARNTL2, EHF	5	0.17	0.233	0.007	0.007
GBP5	GBP5, STAT3, NFKB1, STAT1	4	0.142	0.224	0.007	0.007
GDA	GDA, RCOR1, NFKB1, E2F8, ARNTL2	5	0.149	0.21	0.007	0.007
GDPD3	GDPD3, TP63, NFKB1, ARNTL2, EHF	5	0.169	0.199	0.007	0.007
GJB6	GJB6, TP63, NFKB1, ARNTL2, EHF	5	0.18	0.226	0.007	0.007
GLDC	GLDC, GATA2, FOXA1, TCF7L1	4	0.159	0.257	0.007	0.007
GLT1D1	GLT1D1, KDM5B, EHF, NFKB1, STAT3	5	0.168	0.209	0.007	0.007
GM2A	GM2A, RCOR1, ARNTL2, NFKB1	4	0.201	0.242	0.007	0.007
GNLY	GNLY, TEAD4, ELF3, ID1, JUNB	5	0.125	0.163	0.007	0.007
GPR12	GPR12, ESR1, NCOR2, GLI2, NR1D1, NEUROD2, KLF9	7	0.21	0.285	0.007	0.007
GPR15	GPR15, STAT1, NFKB1, IRF9, RCOR1, STAT2	6	0.107	0.185	0.007	0.007
GPR158	GPR158, STAT3, NFKB1, EHF, STAT1	5	0.104	0.191	0.007	0.007
GPR18	GPR18, SPIB, IKZF1, NFKB1, BATF, LEF1, STAT1	7	0.036	0.149	0.007	0.007
GPR68	GPR68, LEF1, NFKB1, E2F8, EHF	5	0.178	0.213	0.007	0.007
GPR84	GPR84, STAT1, NFKB1, STAT3, MTF1, ARNTL2, ELF3	7	0.155	0.215	0.007	0.007
GPT	GPT, ZNF250, ZBTB4, ARNT, FOXJ2, KLF11	6	0.159	0.277	0.007	0.007
GREB1L	GREB1L, NCOR2, KLF13, NFATC1, ZBTB4, PATZ1, RXRA, KLF11	8	0.13	0.29	0.007	0.007
GREM2	GREM2, SMAD4, ID4, PPARA, SP4	5	0.162	0.289	0.007	0.007
GSTA3	GSTA3, AR, ZBTB4, NRF1	4	0.205	0.287	0.007	0.007
HAL	HAL, RCOR1, NFKB1, ARNTL2, STAT1	5	0.183	0.224	0.007	0.007
HAO2	HAO2, ESR1, KLF15, TCF7L1, NR1D1, ID4, PPARA	7	0.177	0.3	0.007	0.007
HAS3	HAS3, STAT3, EHF, MTF1, E2F8, PRDM4, ARNTL2, ZNF217, NFKB1	9	0.053	0.198	0.007	0.007

HELZ2	HELZ2, STAT1, NFKB1, IRF9, EHF	5	0.156	0.229	0.007	0.007
HEPHL1	HEPHL1, STAT3, EHF, NFKB1, RCOR1, MTF1, STAT1	7	0.13	0.227	0.007	0.007
HERC6	HERC6, EHF, NFKB1, IRF9	4	0.171	0.223	0.007	0.007
HGD	HGD, ESR1, TCF7L1, AR, GATA6, NR1D1, TCF7L2, TCF21	8	0.137	0.276	0.007	0.007
HHATL	HHATL, ESR1, NEUROD2, JUND, UBTF	5	0.142	0.233	0.007	0.007
HIF3A	HIF3A, SP4, GLI2, NR1D1, GATA6, FOXO1, AR, FOXA1	8	0.139	0.282	0.007	0.007
HIST1H1A	HIST1H1A, SPDEF, KLF15, FOXO1, PPARG, DMRT2, FOXJ2, ZNF263, KLF9, AR, CREB3L1, BHLHE41, FOXA1	13	0.032	0.266	0.007	0.007
HIST1H4E	HIST1H4E, SIX5, HSF1, NFE2L1, ZBTB4, MEF2D, KLF13, GATA3	8	0.032	0.22	0.007	0.007
HMGCS2	HMGCS2, GATA6, ZBTB4, TCF7L2, BHLHE41	5	0.215	0.287	0.007	0.007
HORMAD1	HORMAD1, TEAD4, STAT3, STAT1	4	0.11	0.157	0.007	0.007
HOXB13	HOXB13, LEF1, NFE2L3	3	0.114	0.155	0.007	0.007
HSD17B13	HSD17B13, FOXA1, AR, NR1D1, KLF15	5	0.15	0.255	0.007	0.007
HSD3B1	HSD3B1, GATA6, FOXJ2, TFDP2, ZBTB4, UBTF, ARNT, VEZF1, PPARG	9	0.155	0.276	0.007	0.007
HSPB7	HSPB7, AR, ZBTB4, TFDP2, GATA6	5	0.171	0.294	0.007	0.007
ICOS	ICOS, RCOR1, NFKB1, ARNTL2	4	0.159	0.221	0.007	0.007
IFI44L	IFI44L, STAT3, MTF1, EHF, RCOR1	5	0.094	0.189	0.007	0.007
IFI6	IFI6, RCOR1, NFKB1, STAT2	4	0.137	0.208	0.007	0.007
IFIH1	IFIH1, EHF, NFKB1, STAT2	4	0.138	0.222	0.007	0.007
IFIT1	IFIT1, STAT3, NFKB1, EHF	4	0.123	0.215	0.007	0.007
IFIT3	IFIT3, EHF, NFKB1, MTF1, RCOR1	5	0.112	0.209	0.007	0.007
IGFL1	IGFL1, STAT3, STAT1, NFKB1, STAT2, IRF9, EHF	7	0.134	0.195	0.007	0.007
IKZF3	IKZF3, JUNB, NFKB1, ID1, E2F2, EGR1	6	0.117	0.187	0.007	0.007
IL12RB1	IL12RB1, STAT3, NFKB1, MTF1, STAT1, EHF, ARNTL2	7	0.143	0.22	0.007	0.007
IL17A	IL17A, STAT1, NFKB1, STAT3, STAT2	5	0.142	0.199	0.007	0.007
IL17C	IL17C, LEF1, NFKB1, EHF, STAT3	5	0.119	0.191	0.007	0.007
IL17F	IL17F, TEAD4, PITX1, STAT1, JUNB	5	0.095	0.153	0.007	0.007
IL19	IL19, JUNB, IRF1, ID1, PITX1, PAX5, RELB, BATF	8	0.092	0.176	0.007	0.007
IL20	IL20, STAT3, NFKB1, ELF3, EHF	5	0.108	0.192	0.007	0.007
IL21R	IL21R, RCOR1, NFKB1, EHF, NFE2L3	5	0.151	0.223	0.007	0.007
IL22	IL22, TEAD4, PITX1, ELF3, E2F2, STAT3, ID1	7	0.117	0.17	0.007	0.007
IL2RA	IL2RA, HIF1A, EHF, STAT3, BHLHE40, MTF1, ELF3	7	0.121	0.195	0.007	0.007
IL34	IL34, UBTF, NCOR2, ZBTB4, MEF2D	5	0.243	0.31	0.007	0.007
IL36RN	IL36RN, TEAD4, NFKB1, STAT1	4	0.167	0.191	0.007	0.007
IL4I1	IL411, E2F8, ID1, STAT3	4	0.161	0.178	0.007	0.007
IL6	IL6, ELF3, JUNB, PAX5, MXD1	5	0.098	0.158	0.007	0.007
IL7R	IL7R, STAT1, NFKB1, STAT2	4	0.158	0.234	0.007	0.007

IRX6	IRX6, SP4, ZNF84, ZKSCAN1, KLF15, NR2F1, GL13, TCF12	8	0.166	0.27	0.007	0.007
ISG15	ISG15, E2F8, STAT3, EHF, ARNTL2, MTF1, ELF3, MXD1	8	0.116	0.187	0.007	0.007
IYD	IYD, ESR1, NR1D1, KLF15, GLI2, GATA6, FOXJ2, NEUROD2, AR, GATA3, MEF2D	11	0.151	0.296	0.007	0.007
KANK4	KANK4, GATA6, NEUROD2, NR1D1, ZBTB4, PATZ1	6	0.207	0.32	0.007	0.007
KAZALD1	KAZALD1, NCOR2, GATA3, ZBTB4, NRF1, RXRA	6	0.136	0.285	0.007	0.007
KCNG3	KCNG3, RCOR1, STAT3, EHF, HIF1A, NFKB1, ARNTL2	7	0.109	0.188	0.007	0.007
KCNH2	KCNH2, NCOR2, ZBTB4, KLF13, NFATC1, GLI2, NFIC, MEF2D	8	0.198	0.304	0.007	0.007
KCTD16	KCTD16, GATA3, NR1D1, ZBTB4, PATZ1, NFIC	6	0.122	0.289	0.007	0.007
KLK10	KLK10, E2F2, E2F8, MTF1, EHF, STAT3	6	0.085	0.181	0.007	0.007
KLK13	KLK13, RCOR1, NFKB1, STAT2, STAT1	5	0.17	0.223	0.007	0.007
KLK6	KLK6, TP63, ARNTL2, NFKB1, RCOR1, STAT1	6	0.158	0.201	0.007	0.007
KLRF2	KLRF2, GATA3, GLI1	3	0.159	0.234	0.007	0.007
KRT16	KRT16, STAT3, STAT1, NFKB1, EHF, MTF1	6	0.149	0.221	0.007	0.007
KRT24	KRT24, STAT3, PRDM1, NFKB1, EHF, MTF1, MXD1, STAT1	8	0.054	0.189	0.007	0.007
KRT3	KRT3, ESR1, ZNF250, ZNF83, PPARA, HSF4	6	0.037	0.194	0.007	0.007
KRT31	KRT31, ESR1, KLF15, NR1D1, GL11	5	0.077	0.268	0.007	0.007
KRT4	KRT4, GATA6, NR3C2, KLF15, CREB3L1, FOXJ2	6	0.117	0.252	0.007	0.007
KRT6A	KRT6A, STAT3, NFKB1, EHF, STAT1	5	0.12	0.234	0.007	0.007
KRT6B	KRT6B, STAT3, STAT1, NFKB1, EHF	5	0.128	0.201	0.007	0.007
KRT6C	KRT6C, STAT3, STAT1, NFKB1, EHF, ID1, MTF1	7	0.093	0.205	0.007	0.007
KRT79	KRT79, SPDEF, KLF15, FOXO1, DMRT2, GL11, AR, TCF21, TCF7L1	9	0.191	0.28	0.007	0.007
KRTAP9-8	KRTAP9-8, ESR1, GATA6, TBX3, HAND2, BHLHE41, KLF15, HES1	8	0.059	0.269	0.007	0.007
LAG3	LAG3, STAT3, NFKB1, EHF, STAT1	5	0.139	0.211	0.007	0.007
LAMP3	LAMP3, TP63, NFKB1, RCOR1, ARNTL2	5	0.15	0.209	0.007	0.007
LCE3B	LCE3B, SOX2, LEF1, TCF7, ID1	5	0.104	0.132	0.007	0.007
LCE3E	LCE3E, TP63, NFKB1, EHF, RCOR1, ARNTL2, MTF1, NFE2L3	8	0.119	0.207	0.007	0.007
LCN2	LCN2, E2F8, MTF1, EHF	4	0.182	0.211	0.007	0.007
LGALS9C	LGALS9C, TP63, NFKB1, RCOR1, ARNTL2	5	0.133	0.197	0.007	0.007
LGI3	LGI3, UBTF, NCOR2, ZBTB4, RXRA, GATA2, MEF2D, GATA3, ARNT, NFATC1	10	0.134	0.313	0.007	0.007
LOR	LOR, SPDEF, NR1D1, GATA3, GL12, RFX2, UBTF, NCOR2	8	0.204	0.3	0.007	0.007
LRIT2	LRIT2, UBTF, NFE2L1, ZNF274	4	0.175	0.245	0.007	0.007
LTB4R	LTB4R, RCOR1, NFKB1, EHF, ARNTL2, STAT1	6	0.192	0.236	0.007	0.007
LYPD1	LYPD1, LEF1, NFKB1, STAT1, EHF, STAT2	6	0.105	0.18	0.007	0.007
MACROD2	MACROD2, GL12, NR1D1, ZNF250, ZBTB4	5	0.222	0.271	0.007	0.007
MAP6	MAP6, NR3C1, FOXJ2, NRF1, KLF15	5	0.179	0.257	0.007	0.007
MAPK4	MAPK4, ZNF263, FOXO1, GATA6, NEUROD2, AR, NR1D1	7	0.233	0.284	0.007	0.007
MAST1	MAST1, GATA6, ZBTB4, UBTF, TCF7L1, TFDP2	6	0.158	0.288	0.007	0.007

MATIA	MAT1A, GATA6, KLF15, GL11, BHLHE41, FOXA1	6	0.09	0.288	0.007	0.007
MATN4	MATN4, SPDEF, ZNF83, TFDP2, TCF7L1, FOXO1	6	0.133	0.245	0.007	0.007
MEFV	MEFV, TP63, ARNTL2, NFKB1, STAT1, MTF1	6	0.146	0.201	0.007	0.007
METTL7B	METTL7B, ESR1, NR1D1, GLI2, NCOR2, KLF15, KLF11, FOXJ2	8	0.093	0.29	0.007	0.007
MFSD2B	MFSD2B, LEF1, NFKB1, NFE2L3	4	0.178	0.194	0.007	0.007
MLC1	MLC1, ZNF263, RXRA, ZBTB4, MEF2D, UBTF, NFE2L1, MAFK	8	0.157	0.281	0.007	0.007
MMP1	MMP1, ESR1, DMRT2, HOXB4, MEIS2, TCF12	6	0.012	0.164	0.007	0.007
MMP9	MMP9, STAT1, NFKB1, STAT3, EHF, MTF1	6	0.173	0.197	0.007	0.007
MOGAT1	MOGAT1, ESR1, NR1D1, KLF15, GATA6, FOXK1	6	0.147	0.287	0.007	0.007
MOGAT2	MOGAT2, ESR1, NR1D1, NCOR2, NR2F1, KLF15, GLI2	7	0.188	0.265	0.007	0.007
MPHOSPH6	MPHOSPH6, EHF, NFKB1, MTF1, RCOR1, STAT3	6	0.16	0.22	0.007	0.007
MSMB	MSMB, GATA3, PATZ1, JUND, NR2F1, ZBTB4	6	0.217	0.27	0.007	0.007
MTRNR2L1	MTRNR2L1, SIX5, NCOR2, NFATC1, RXRA, CAMTA2, KLF13, GLI2, THAP11, HSF1	10	0.051	0.248	0.007	0.007
MUC1	MUC1, ESR1, KLF15, NR1D1, DMRT2	5	0.139	0.275	0.007	0.007
<i>MUC16</i>	MUC16, ESR1, CREB3L4, KLF15, HAND2, HOXB5	6	0.173	0.268	0.007	0.007
MUC7	MUC7, FOXA1, ESR1, KLF15, FOXC1, TCF7L2, DMRT2, NR3C2, GATA6, CREB3L4	10	0.105	0.268	0.007	0.007
MX1	MX1, SPIB, NFKB1, IRF1, STAT1, IRF9	6	0.134	0.199	0.007	0.007
MX2	MX2, RCOR1, NFKB1, IRF9, STAT1, STAT2	6	0.116	0.202	0.007	0.007
MXD1	MXD1, E2F8, NFE2L3, EHF	4	0.175	0.204	0.007	0.007
MYEOV	MYEOV, GATA6, NR1D1, NEUROD2, KLF15	5	0.209	0.319	0.007	0.007
MYH11	MYH11, FOXA1, DMRT2, FOXC1, FOXO1	5	0.176	0.255	0.007	0.007
MYH14	MYH14, GATA6, ZBTB4, GATA3, KLF15	5	0.281	0.348	0.007	0.007
MYO1H	MYO1H, RCOR1, NFKB1, MTF1, EHF, STAT3, STAT1	7	0.113	0.215	0.007	0.007
МҮОС	MYOC, SPDEF, GATA6, PPARA, PPARG, ATF7, FOXJ2, NRF1, ZBTB4	9	0.206	0.271	0.007	0.007
MYOM2	MYOM2, NR3C1, ATF7, SP4	4	0.175	0.258	0.007	0.007
NAMPT	NAMPT, EHF, NFKB1, MTF1, RCOR1, STAT3, ZNF217, STAT1	8	0.171	0.234	0.007	0.007
NCAM1	NCAM1, SP4, KLF15, ZKSCAN1, TFDP2, BCL6	6	0.202	0.301	0.007	0.007
NELL1	NELL1, ESR1, HOXB5, TCF7L1, GATA3, CREB3L1, DMRT2	7	0.109	0.247	0.007	0.007
NETO1	NETO1, ESR1, DMRT2, NR3C2, KLF15, FOXO1, GATA2, ID4, NRF1	9	0.064	0.27	0.007	0.007
NEUROD2	NEUROD2, GATA6, KLF15, BHLHE41	4	0.217	0.281	0.007	0.007
NFKBIZ	NFKBIZ, RCOR1, ARNTL2, NFKB1, EHF, E2F8	6	0.214	0.246	0.007	0.007
NMI	NMI, E2F8, EHF, NFKB1, MTF1, IRF9	6	0.151	0.205	0.007	0.007
NOS2	NOS2, E2F8, MTF1, RCOR1, NFKB1, ARNTL2, STAT3, STAT2	8	0.183	0.205	0.007	0.007
NR1D1	NR1D1, GATA6, GL12, FOXO1, KLF15	5	0.206	0.281	0.007	0.007
NR4A3	NR4A3, LEF1, NFKB1, STAT1	4	0.092	0.182	0.007	0.007
NT5C3A	NT5C3A, E2F8, EHF, NFKB1, MTF1	5	0.139	0.208	0.007	0.007
NUP210	NUP210, RCOR1, NFKB1, STAT2	4	0.151	0.207	0.007	0.007

OAS1	OAS1, RCOR1, NFKB1, STAT2, E2F8	5	0.165	0.223	0.007	0.007
OAS2	OAS2, RCOR1, NFKB1, IRF9, STAT1, EHF	6	0.181	0.227	0.007	0.007
OAS3	OAS3, EHF, MTF1, NFKB1, RCOR1	5	0.145	0.239	0.007	0.007
OASL	OASL, STAT2, RCOR1	3	0.13	0.204	0.007	0.007
ODF3L1	ODF3L1, TCF7L1, NRF1, ZBTB4	4	0.205	0.27	0.007	0.007
OLAH	OLAH, FOXA1, ESR1, KLF15, PATZ1, BHLHE41, FOXO4, ALX4, GATA6	9	0.123	0.285	0.007	0.007
OLR1	OLR1, STAT3, NFKB1, STAT1, EHF, STAT2	6	0.119	0.193	0.007	0.007
OSM	OSM, IRF1, JUNB, ELF3, STAT3	5	0.087	0.157	0.007	0.007
ОТОР2	OTOP2, STAT1, NFKB1, STAT2, IRF9, LEF1	6	0.068	0.188	0.007	0.007
ОТОРЗ	OTOP3, MBD2, NFE2L2, EHF, NFKB1, TP63, PRDM1, NFE2L3	8	0.086	0.158	0.007	0.007
P2RX1	P2RX1, AR, ZBTB4, ARNT, GATA6, PATZ1	6	0.177	0.292	0.007	0.007
PAMR1	PAMR1, GATA3, ZBTB4, KLF13, TCF7L2	5	0.226	0.292	0.007	0.007
PARP14	PARP14, SPIB, STAT2, STAT1	4	0.115	0.178	0.007	0.007
PARP9	PARP9, RCOR1, NFKB1, ARNTL2	4	0.181	0.234	0.007	0.007
РСК1	PCK1, AR, KLF15, SPDEF, FOXO1, GL12	6	0.069	0.255	0.007	0.007
PCP4	PCP4, MAFK, ZBTB4, GATA3, NFATC1, NFIC, FOXO4, FOXJ2, UBTF	9	0.139	0.284	0.007	0.007
PCP4L1	PCP4L1, LEF1, E2F8, NFKB1, IRF1	5	0.119	0.201	0.007	0.007
PCSK1	PCSK1, STAT1, NFKB1, STAT3, EHF, ELF3	6	0.123	0.205	0.007	0.007
PCSK1N	PCSK1N, GATA6, KLF15, GATA3, PPARA, FOXJ2, ARNT	7	0.125	0.289	0.007	0.007
PDCD1	PDCD1, STAT1, NFKB1, STAT2	4	0.145	0.225	0.007	0.007
PDE6A	PDE6A, ESR1, KLF15, NR1D1, GL12	5	0.144	0.274	0.007	0.007
PDZD7	PDZD7, GATA6, ZBTB4, FOXO4, FOXJ2, UBTF	6	0.253	0.33	0.007	0.007
PDZK1	PDZK1, GATA6, KLF15, NR1D1, NRF1, BHLHE41, NEUROD2, FOXO4, AR	9	0.161	0.311	0.007	0.007
PDZK1IP1	PDZK11P1, STAT3, MTF1, STAT1, NFKB1, RCOR1	6	0.155	0.21	0.007	0.007
PDZRN4	PDZRN4, GATA6, SMARCC2, FOXJ2, KLF15, ARNT, PPARA	7	0.199	0.268	0.007	0.007
PEBP4	PEBP4, AR, ZBTB4, DMRT2, ARNT, KLF13, PPARA	7	0.185	0.276	0.007	0.007
PECR	PECR, ESR1, KLF15, NR1D1, TCF7L1, FOXO4	6	0.185	0.287	0.007	0.007
<i>PI3</i>	PI3, STAT1, NFKB1, STAT2, STAT3, ELF3	6	0.176	0.229	0.007	0.007
PIP	PIP, ESR1, ZNF83, NRF1, KLF15, AR, GATA6, KLF9, TCF21	9	0.117	0.288	0.007	0.007
PLA2G2D	PLA2G2D, STAT3, NFKB1, EHF, ELF3, STAT2	6	0.077	0.169	0.007	0.007
PLA2G3	PLA2G3, PITX1, STAT1, NFKB1, STAT3, ID1, STAT2	7	0.155	0.201	0.007	0.007
PLA2G4E	PLA2G4E, STAT3, STAT1, MTF1, TP63, EHF	6	0.178	0.213	0.007	0.007
PLAT	PLAT, RCOR1, NFKB1, TP63, NFE2L3	5	0.139	0.194	0.007	0.007
PLBD1	PLBD1, RCOR1, NFKB1, ARNTL2	4	0.179	0.245	0.007	0.007
PLCXD1	PLCXD1, STAT1, E2F8, MTF1, EHF, MXD1	6	0.163	0.213	0.007	0.007
PLIN1	PLIN1, SPDEF, KLF15, AR, ID4, NRF1, HAND2	7	0.13	0.295	0.007	0.007
PLIN4	PLIN4, SPDEF, KLF15, FOXO1, HOXB5	5	0.134	0.276	0.007	0.007

PLLP	PLLP, UBTF, ZBTB4, MEF2D, GATA3, GATA6	6	0.262	0.312	0.007	0.007
PNCK	PNCK, AR, ZBTB4, NRF1, FOXO1, FOXJ2, SMARCC2	7	0.217	0.3	0.007	0.007
PNLDC1	PNLDC1, ESR1, KLF15, TCF7L1, ID4, NR1D1	6	0.171	0.275	0.007	0.007
PNP	PNP, EHF, NFKB1	3	0.155	0.257	0.007	0.007
PNPLA5	PNPLA5, ESR1, KLF15, NR1D1, GL12, GATA3, NCOR2	7	0.135	0.309	0.007	0.007
POLR3G	POLR3G, CTCF, VEZF1, HIVEP1, PBX1, HOXC6, ETV1, ZNF236	8	0.008	0.137	0.007	0.007
PPP1R1A	PPP1R1A, ZNF263, KLF15, TCF7L1, BHLHE41, ARNT, GLIS2	7	0.15	0.263	0.007	0.007
PPP1R1B	PPP1R1B, AR, ZBTB4, GATA6	4	0.145	0.26	0.007	0.007
PRB2	PRB2, GATA3, NR1D1, UBTF, PATZ1, GLI2, GLIS1	7	0.158	0.273	0.007	0.007
PRDM1	PRDM1, STAT1, NFKB1, STAT3, MXD1	5	0.138	0.209	0.007	0.007
PRR15L	PRR15L, ZNF250, NRF1, FOXJ2, VEZF1	5	0.124	0.274	0.007	0.007
PRSS22	PRSS22, LEF1, NFKB1, E2F8, STAT3, IRF1	6	0.174	0.197	0.007	0.007
PRSS27	PRSS27, STAT1, NFKB1, IRF9	4	0.177	0.223	0.007	0.007
PSAPL1	PSAPL1, YY1, FOXJ2, ZBTB4, KLF13, NCOR2, GATA3, RXRA, ZMIZ1, GLI2	10	0.2	0.286	0.007	0.007
PSCA	PSCA, GATA6, KLF15, FOXJ2, PPARA, GATA2, ZBTB4	7	0.219	0.307	0.007	0.007
PTCHD1	PTCHD1, SPDEF, KLF15, NR1D1, ID4, NRF1, AR, GATA6	8	0.215	0.289	0.007	0.007
RAB3B	RAB3B, ARNT, FOXJ2, ZBTB4	4	0.121	0.275	0.007	0.007
RASGRP1	RASGRP1, EHF, NFKB1, RCOR1, MTF1, STAT3	6	0.169	0.225	0.007	0.007
RBP4	RBP4, FOXA1, DMRT2, HOXB5, GLI3, FOXC1	6	0.15	0.262	0.007	0.007
RGS1	RGS1, STAT1, NFKB1, IRF9, STAT2, E2F8	6	0.156	0.228	0.007	0.007
RGS9BP	RGS9BP, ESR1, NR1D1, KLF15	4	0.182	0.292	0.007	0.007
RHCG	RHCG, STAT3, RCOR1, NFKB1, STAT1, EHF, MTF1, ARNTL2	8	0.161	0.218	0.007	0.007
RIMS4	RIMS4, SPDEF, DDIT3, KLF15, TCF7L2, NRF1, AR, ZNF263, HAND2	9	0.143	0.288	0.007	0.007
RND1	RND1, STAT1, NFKB1, STAT3	4	0.163	0.216	0.007	0.007
RNF222	RNF222, TEAD4, E2F2, EHF	4	0.129	0.178	0.007	0.007
ROS1	ROS1, PPARG, AR, TCF21, CREB3L1, GL11, ESR1, FOXA1, TCF7L2, NR1D1	10	0.153	0.281	0.007	0.007
RP11-98L5.5	RP11-98L5.5, GATA6, ZBTB4, FOXJ2, GATA3, NRF1	6	0.294	0.324	0.007	0.007
RRM2	RRM2, E2F2, LEF1	3	0.057	0.133	0.007	0.007
RSAD2	RSAD2, RCOR1, IRF9, NFKB1, STAT2, E2F8	6	0.113	0.214	0.007	0.007
RTP4	RTP4, RCOR1, NFKB1, ARNTL2	4	0.146	0.22	0.007	0.007
RUFY4	RUFY4, STAT1, NFKB1, STAT2, EHF	5	0.087	0.204	0.007	0.007
S100A8	S100A8, STAT1, NFKB1, STAT2	4	0.199	0.241	0.007	0.007
S100A9	S100A9, STAT1, NFKB1, STAT2	4	0.186	0.25	0.007	0.007
SAA1	SAA1, TP63, NFKB1, RCOR1, IRF9, EHF	6	0.075	0.178	0.007	0.007
SAA2	SAA2, TP63, RCOR1, NFKB1, ARNTL2, MTF1, EHF, NFE2L3, STAT3	9	0.102	0.194	0.007	0.007
SAMD9	SAMD9, STAT2, EHF, NFKB1, RCOR1, MTF1, STAT1	7	0.16	0.207	0.007	0.007
SAMSN1	SAMSN1, KDM5B, EHF, NFKB1, IRF9, STAT1	6	0.131	0.202	0.007	0.007

SCARA5	SCARA5, GLI2, NR1D1, SMARCC2, TCF7L1, NFATC1, ZBTB4	7	0.199	0.273	0.007	0.007
SCGB1D2	SCGB1D2, NR3C1, FOXJ2, AR, GATA6, ATF7, NR1D1	7	0.097	0.249	0.007	0.007
SCGB2A1	SCGB2A1, ESR1, GL11, HAND2, HOXB5, FOXA1	6	0.122	0.257	0.007	0.007
SCIN	SCIN, GLI2, SMAD4, GATA3, ID4, HES1	6	0.229	0.302	0.007	0.007
SCUBE1	SCUBE1, NRF1, FOXO1, GATA6, ZBTB4	5	0.216	0.303	0.007	0.007
SEC14L4	SEC14L4, ESR1, KLF15, TCF7L1, NR1D1, ID4	6	0.138	0.285	0.007	0.007
SELE	SELE, TEAD4, STAT3, NFKB1, ELF3, PITX1	6	0.126	0.166	0.007	0.007
SELL	SELL, STAT1, NFKB1, STAT2, EHF	5	0.138	0.208	0.007	0.007
SEMA3B	SEMA3B, NFATC1, NRF1, NCOR2	4	0.161	0.282	0.007	0.007
SERHL2	SERHL2, VEZF1, FOXA1, ZBTB4, AR, FOXO1, TCF7L1, ETV1, ARNT, KLF15, GATA6	11	0.132	0.249	0.007	0.007
SERPINA1	SERPINA1, RCOR1, EHF, NFKB1, NFE2L3	5	0.157	0.206	0.007	0.007
SERPINB13	SERPINB13, TP63, ARNTL2, NFKB1, EHF, RCOR1	6	0.179	0.214	0.007	0.007
SERPINB9	SERPINB9, E2F8, EHF, NFKB1, STAT2, IRF9	6	0.139	0.216	0.007	0.007
SERTM1	SERTM1, ZNF263, NR3C2, KLF15	4	0.168	0.251	0.007	0.007
SEZ6L	SEZ6L, ZNF263, ZNF84, KLF15, AR, ID4, PBX3, ZNF3	8	0.195	0.284	0.007	0.007
SFRP5	SFRP5, SMAD4, GATA3, NR3C2	4	0.188	0.267	0.007	0.007
SGCA	SGCA, SMAD4, DMRT2, FOXO1, GLIS2	5	0.148	0.255	0.007	0.007
SGCG	SGCG, GATA3, ZBTB4, MEF2D, TCF7L1, PATZ1, UBTF, NFATC1, VEZF1	9	0.196	0.314	0.007	0.007
SGK2	SGK2, GATA6, NR1D1, ZBTB4, GATA2	5	0.138	0.27	0.007	0.007
SH2D1A	SH2D1A, KDM5B, NFKB1, ARNTL2, EHF	5	0.127	0.184	0.007	0.007
SIRPG	SIRPG, RCOR1, NFKB1, STAT2, EHF	5	0.108	0.207	0.007	0.007
SLC14A1	SLC14A1, GATA2, TBX3, AR, HAND2, KLF15, PPARG, KLF13, DMRT2, GATA6	10	0.127	0.305	0.007	0.007
SLC16A6	SLC16A6, STAT3, NFKB1, IRF9, STAT1, STAT2, MTF1	7	0.147	0.195	0.007	0.007
SLC22A31	SLC22A31, ESR1, KLF15, NR1D1, EGR2	5	0.134	0.268	0.007	0.007
SLC25A18	SLC25A18, ESR1, KLF15, NR3C2, FOXA1	5	0.121	0.256	0.007	0.007
SLC26A3	SLC26A3, GATA6, KLF15, BHLHE41, CREB3L4	5	0.143	0.249	0.007	0.007
SLC26A4	SLC26A4, RCOR1, NFKB1, EHF, MTF1, IRF9, STAT1	7	0.106	0.213	0.007	0.007
SLC26A5	SLC26A5, NFATC1, ZBTB4, RXRA, KLF13, UBTF	6	0.144	0.287	0.007	0.007
SLC26A9	SLC26A9, LEF1, E2F8, NFKB1, EHF	5	0.164	0.204	0.007	0.007
SLC27A2	SLC27A2, ESR1, NR1D1, GLI2, NCOR2, KLF15, NEUROD2	7	0.158	0.292	0.007	0.007
SLC2A14	SLC2A14, ESR1, KLF15, NR1D1, GATA6, NFIC, PPARA	7	0.122	0.282	0.007	0.007
SLC30A10	SLC30A10, GATA6, BHLHE41, NR1D1, KLF15, NEUROD2, GLIS1, NRF1	8	0.138	0.305	0.007	0.007
SLC46A2	SLC46A2, ZNF263, ZBTB4, NCOR2, GATA3, NFIC, FOXJ2	7	0.186	0.301	0.007	0.007
SLC52A3	SLC52A3, HIF1A, NFKB1, EHF, STAT3, ELF3, MTF1, STAT1	8	0.146	0.21	0.007	0.007
SLC9A2	SLC9A2, ZNF250, NRF1, DDIT3	4	0.188	0.269	0.007	0.007
SLCO4C1	SLCO4C1, GATA6, GATA2, KLF15	4	0.144	0.263	0.007	0.007
SMOX	SMOX, STAT3, NFKB1, EHF, PRDM1, MXD1	6	0.123	0.201	0.007	0.007

SNTB1	SNTB1, AR, ZBTB4, UBTF	4	0.307	0.338	0.007	0.007
SOAT1	SOAT1, VEZF1, FOXJ2, AR, NR1D1, TFDP2, KLF15	7	0.111	0.258	0.007	0.007
SOCS3	SOCS3, LEF1, NFKB1, E2F8, STAT3	5	0.139	0.195	0.007	0.007
SOST	SOST, EGR1, LEF1, RELB	4	0.138	0.164	0.007	0.007
SPDEF	SPDEF, KLF15, GATA6, TCF21, DMRT2, TCF7L2, FOXJ2	7	0.156	0.289	0.007	0.007
SPIB	SPIB, NFKB1, STAT1, IRF9, EHF	5	0.149	0.198	0.007	0.007
SPINK1	SPINK1, GATA6, NR1D1, KLF15, FOXJ2	5	0.267	0.319	0.007	0.007
SPRR1B	SPRR1B, STAT3, NFKB1, EHF, MTF1	5	0.116	0.205	0.007	0.007
SPRR2D	SPRR2D, JUNB, NFKB1, STAT1	4	0.186	0.211	0.007	0.007
SPRR2E	SPRR2E, RCOR1, E2F8, NFKB1, ARNTL2	5	0.18	0.234	0.007	0.007
SPRR4	SPRR4, GATA6, NR1D1, GATA3, KLF15, PPARA	6	0.194	0.308	0.007	0.007
SPX	SPX, ESR1, NR3C2, NR1D1, DMRT2, KLF15, ZNF83, BHLHE41, ARNT	9	0.07	0.266	0.007	0.007
ST6GALNAC1	ST6GALNAC1, RCOR1, NFKB1, STAT2, MTF1	5	0.142	0.216	0.007	0.007
STAT1	STAT1, ARNTL2, NFKB1	3	0.193	0.259	0.007	0.007
SYNM	SYNM, SPDEF, KLF15, DDIT3	4	0.188	0.268	0.007	0.007
SYPL2	SYPL2, ESR1, KLF15, NR1D1, GLI2	5	0.154	0.284	0.007	0.007
SYT5	SYT5, STAT1, NFKB1, STAT2	4	0.164	0.185	0.007	0.007
SYT8	SYT8, GATA3, FOXA1, NCOR2	4	0.243	0.287	0.007	0.007
SYT9	SYT9, GATA6, KLF15, ZBTB4, GATA3, FOXJ2, FOXO4, MEF2D	8	0.205	0.326	0.007	0.007
TACR2	TACR2, GATA6, KLF15, GATA3, FOXJ2	5	0.197	0.278	0.007	0.007
TCL1A	TCL1A, STAT1, BATF3, LEF1, TCF7, SPIB	6	0.086	0.156	0.007	0.007
TCN1	TCN1, RCOR1, NFKB1, EHF, MTF1, MXD1, STAT1	7	0.166	0.212	0.007	0.007
TGM1	TGM1, STAT3, STAT1, NFKB1, PRDM1	5	0.129	0.21	0.007	0.007
TGM6	TGM6, TEAD4, ID1, ELF3, PITX1	5	0.111	0.156	0.007	0.007
THRSP	THRSP, AR, NR1D1	3	0.196	0.243	0.007	0.007
ТМС5	TMC5, STAT1, NFKB1, ARNTL2, EHF	5	0.166	0.239	0.007	0.007
TMEM132B	TMEM132B, ESR1, KLF13, GATA2, KLF15	5	0.202	0.255	0.007	0.007
<i>TMEM171</i>	TMEM171, LEF1, STAT3, NFKB1, STAT1, EHF	6	0.123	0.185	0.007	0.007
TMEM255A	TMEM255A, UBTF, ZBTB4, GATA3, NFIC, TCF7L1	6	0.201	0.311	0.007	0.007
TMEM45B	TMEM45B, STAT3, ARNTL2, NFKB1, EHF	5	0.154	0.238	0.007	0.007
TMEM56	TMEM56, ZKSCAN1, TCF12, TFDP2, TCF7L2, NR3C2	6	0.132	0.242	0.007	0.007
TMEM63C	TMEM63C, NRF1, NR1D1, KLF15, AR, NEUROD2	6	0.155	0.289	0.007	0.007
TMPRSS11E	TMPRSS11E, NR3C1, ZNF250, HBP1	4	0.159	0.24	0.007	0.007
TMPRSS4	TMPRSS4, STAT3, NFKB1, STAT1, RCOR1, EHF	6	0.12	0.217	0.007	0.007
TNFRSF9	TNFRSF9, LEF1, NFKB1, EHF, E2F8, MTF1	6	0.139	0.201	0.007	0.007
TNIP3	TNIP3, TP63, STAT1, STAT3, RCOR1, EHF, MTF1, NFKB1	8	0.124	0.203	0.007	0.007
TNN	TNN, ESR1, SMAD4, ZKSCAN1, ID4, PPARA	6	0.118	0.246	0.007	0.007

TNNC1	TNNC1, PATZ1, ZBTB4, NFATC1, KLF13, UBTF	6	0.242	0.326	0.007	0.007
TNNI2	TNNI2, GATA1, ZBTB4, HOXB5, GATA6, NR3C2, FOXA1, AR, KLF15, NR1D1	10	0.121	0.262	0.007	0.007
TNNT2	TNNT2, GATA6, NRF1, FOXJ2	4	0.172	0.295	0.007	0.007
TPPP	TPPP, GATA6, ZBTB4, KLF13, FOXJ2, NFIC	6	0.202	0.286	0.007	0.007
TRDN	TRDN, FOXA1, HOXB5, SPDEF, BHLHE41, DMRT2, FOXD2, GATA6, NRF1, FOXO4,	11	0.098	0.282	0.007	0.007
	FOXJ2					
TRIM15	TRIM15, RCOR1, ARNTL2, E2F8, NFKB1	5	0.178	0.213	0.007	0.007
TRIM22	TRIM22, TP63, NFKB1, RCOR1, EHF, IRF9	6	0.172	0.216	0.007	0.007
TRIM55	TRIM55, HAND2, FOXA1, ESR1, KLF15, ZNF263	6	0.155	0.271	0.007	0.007
TSPAN8	TSPAN8, NCOR2, GLI2, ZBTB4	4	0.153	0.266	0.007	0.007
ULBP2	ULBP2, STAT3, NFKB1, STAT1, STAT2	5	0.041	0.181	0.007	0.007
UPB1	UPB1, ESR1, KLF15, NR1D1, GATA6, GLI2, GATA3	7	0.149	0.287	0.007	0.007
UPP1	UPP1, MXD1, LEF1, NFKB1, ZNF217, CBFB, MTF1, PRDM4	8	0.035	0.16	0.007	0.007
VGLL2	VGLL2, ZNF263, FOXJ2, MEF2D, ZBTB4, AR, UBTF, NEUROD2	8	0.134	0.265	0.007	0.007
VNN1	VNN1, RCOR1, NFKB1, STAT1, EHF	5	0.153	0.218	0.007	0.007
WFDC3	WFDC3, GATA6, NR1D1, BHLHE41	4	0.177	0.271	0.007	0.007
WFIKKN2	WFIKKN2, ESR1, FOXA1, GATA6, GL12, SPDEF	6	0.164	0.275	0.007	0.007
WIF1	WIF1, SMAD4, ID4, HOXC9, GATA3, BCL6	6	0.157	0.255	0.007	0.007
WNT2	WNT2, GATA6, SMARCC2, ZBTB4, VEZF1	5	0.244	0.301	0.007	0.007
WNT7B	WNT7B, UBTF, ZBTB4, TCF7L1, PATZ1	5	0.241	0.312	0.007	0.007
XAF1	XAF1, STAT1, NFKB1, IRF9, STAT3, MTF1	6	0.141	0.226	0.007	0.007
XDH	XDH, STAT3, EHF, MXD1, MTF1, ELF3, STAT1, PRDM1	8	0.057	0.206	0.007	0.007
ZBP1	ZBP1, RCOR1, NFKB1, EHF, STAT1, ARNTL2	6	0.143	0.215	0.007	0.007
ZBTB16	ZBTB16, GATA6, NR1D1, GL12, KLF15	5	0.241	0.305	0.007	0.007
ZDHHC11	ZDHHC11, ESR1, FOXA1, KLF15, FOXO1, RFX2	6	0.142	0.254	0.007	0.007
ZDHHC11B	ZDHHC11B, ESR1, FOXA1, HOXB5, PPARG	5	0.155	0.237	0.007	0.007
ZNF135	ZNF135, NRF1, ZBTB4, FOXJ2	4	0.247	0.293	0.007	0.007
ZNF812P	ZNF812P, TP63, NFKB1, EHF, RCOR1	5	0.126	0.172	0.007	0.007
ZP1	ZP1, GATA3, NR1D1, NCOR2, GATA6, DBP	6	0.102	0.293	0.007	0.007