ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ОБЩЕЙ ГЕНЕТИКИ ИМ. Н.И. ВАВИЛОВА РОССИЙСКОЙ АКАДЕМИИ НАУК

На правах рукописи

Климина Ксения Михайловна

Генетический анализ систем токсин-антитоксин суперсемейства RelBE у лактобацилл

03.02.07 - генетика.

ДИССЕРТАЦИЯ

на соискание ученой степени кандидата биологических наук

Научный руководитель: доктор биологических наук, профессор В.Н. Даниленко

Москва 2015 г.

ОГЛАВЛЕНИЕ

ВЕДЕНИЕ4
ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ7
1.1 Общее представление о бактериях рода Lactobacillus7
1.2 ТА системы: общая характеристика и классификация15
1.3 Механизм действия и биомишени токсинов ТА систем
1.4 Функции ТА систем26
1.5 Области применения ТА систем29
1.6 Разнообразие ТА систем II типа30
ГЛАВА 2. МАТЕРИАЛЫ И МЕТОДЫ
2.1 Штаммы и условия культивирования
2.2 Выделение ДНК
2.3 Конструирование праймеров и проведение ПЦР44
2.4 Электрофорез ДНК в агарозном геле и выделение ДНК из геля
2.5 Секвенирование ДНК
2.6 Биоинформатический анализ55
2.7 Клонирование генов ТА систем в экспрессионные векторы
2.8 Определение активности ТА систем в клетках <i>E.coli</i>
2.9 Выделение РНК
2.10 Обратная транскрипция
2.11 Количественная ПЦР в режиме реального времени
2.12 Удлинение праймера (Primer extention)60
2.13 Определение точки начала транскрипции при помощи специфической амплификации концевых фрагментов кДНК (RLM-RACE)60
2.14 Создание lacZ-транскрипционных конструкций (fusions) и определение функционирования промоторов по активности β-галактозидазы в клетках <i>B.subtilis</i> 61
ГЛАВА З. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЯ62
3.1 Видовая идентификация штаммов лактобацилл из лабораторной коллекции62
3.2 Биоинформатический поиск и структура модулей ТА систем суперсемейства RelBE типа в секвенированных геномах лактобацилл70
3.3 Изучение полиморфизма генов суперсемейства RelBE73 3.3.1 Изучение полиморфизма генов суперсемейства RelBE в штаммах <i>L.rhamnosus</i> 73

3.3.2 Изучение полиморфизма генов суперсемейства RelBE в штаммах <i>L.casei</i>
3.4 Изучение функционирования ТА систем лактобацилл в клетках <i>E.coli</i>
3.5 Изучение регуляции экспрессии TA системы YefM-YoeB у штаммов <i>L.rhamnosus95</i> 3.5.1 Особенности проксимального и дистального районов TA системы YefM-YoeBLrh95 3.5.2 Идентификация сайтов инициации транскрипции в TA системе YefM-YoeBLrh97 3.5.3 Исследование активности предполагаемых промоторов
3.6 Поиск и характеристика новых TA систем у L.helveticus 105 3.6.1 Поиск новых TA систем в секвенированных геномах L.helveticus 105 3.6.2 Идентификация и полиморфизм новых TA систем в штаммах L.helveticus из лабораторной коллекции 106 3.6.3 Клонирование и экспрессия в клетках E.coli генов новых TA систем L.helveticus 109
3.7 Системы ТА суперсемейства RelBE как биомаркеры для идентификации 113
ЗАКЛЮЧЕНИЕ
ВЫВОДЫ
СПИСОК СОКРАЩЕНИЙ, ИСПОЛЬЗОВАННЫХ В РАБОТЕ
СПИСОК ЛИТЕРАТУРЫ119
Приложение А
Приложение Б149
Приложение В
Приложение Г167
Приложение Д171
БЛАГОДАРНОСТИ

ведение

Исследование микробиоты человека является одним из быстро развивающихся направлений системной биомедицины [Nicholson J.K. et al., 2012; Kelsen J.R. et al., 2012]. Микробиота кишечника трактуется в настоящее время как сателлитный орган, играющий важную роль в становлении и поддержании иммунитета и общего гомеостаза человека, в том числе его нервно-психических и поведенческих особенностей [Flint H.J. et al., 2012; Foster J.A. et al., 2013]. Композиция пробиотической составляющей кишечной микробиоты (бифидобактерии и лактобациллы) является важнейшим показателем состояния постулируемого органа [Turroni F. et al., 2014]. Длительное нарушение микробного баланса кишечника в сторону снижения количества бифидобактерий и лактобацилл играет значительную роль в развитии ослабленного иммунитета, аллергии и метаболического синдрома, отягощая их течение, и коррелирует с проявлением различных заболеваний: иммунных, кардиологических, гастроэнтерологических, онкологических. нейродегенеративных [Young V.B. et al., 2012, Moloney R.D. et al., 2014]. Видовое и пробиотических штаммовое разнообразие бактерий здоровых людей носит индивидуальный (возраст, образ жизни), этно-социальный (традиции питания) и региональный (популяция) характер. Таким образом, для исследования и мониторинга состояния «сателлитного органа» требуется разработка новых подходов и технологий. В последние годы для этих целей применяют методы метагеномного анализа с использованием секвенаторов нового поколения. Вместе с тем, серьезной проблемой при изучении микробиома человека является отсутствие эффективных генов-биомаркеров для видовой и штаммовой идентификации бактериальных компонентов. Разработка таких маркеров и технологий для диагностики состава микробиоты человека является актуальным вопросом для прикладных (диагностических) исследований общей и персонализированной медицины.

Мы предлагаем использовать для видовой и штаммовой идентификации лактобацилл новый генетический маркер – гены систем токсин-антитоксин (ТА) II типа. Подавляющее большинство генов ТА систем видоспецифичны. Предложенный нами метод видовой и штаммовой идентификации может быть использован как для характеристики отдельных штаммов, так и для характеристики сообщества микроорганизмов, например в микробиоте человека.

ТА системы – это генетические элементы, состоящие из 2-х, реже 3-х генов. Продукты генов токсинов всех известных ТА систем – это белки, в то время как антитоксины – это либо белки, либо некодирующие РНК. ТА системы и их компоненты являются удобным инструментом для решения различных задач в области теоретических исследований и биотехнологии. ТА модули рассматриваются как перспективные "мишени" для разработки антибактериальных препаратов, их потенциал предполагается использовать и для борьбы с вирусными инфекциями. Все это может способствовать борьбе с инфекционными заболеваниями [Demidenok O.I. et al., 2013]. ТА системы представляют собой удобные модули для решения различных научных вопросов, таких как реакция на стресс, персистирующее состояние клеток, апоптоз [Prozorov A.A. et al., 2010; Goeders N. et al., 2014], регуляция активности генов, включая роль малых PHK и коротких пептидов, процессов трансляции и транстрансляции [Shi W. et al., 2011]. Работ, посвященных ТА системам лактобацилл, нет.

Цель работы

Структурно-функциональная характеристика генов ТА систем II типа суперсемейства RelBE у штаммов *Lactobacillus* для их дальнейшего использования в качестве биомаркеров при исследовании микробиоты человека.

<u>Задачи</u>

1. Создание и характеристика коллекции лактобацилл, выделенных из микробиоты здоровых людей центральных областей России.

2. Анализ *in silico* ТА систем суперсемейства RelBE в секвенированных геномах лактобацилл и изучение полиморфизма и функционирования в клетках *E.coli* ТА систем из штаммов лабораторной коллекции.

3. Изучение регуляции экспрессии TA системы Yef-YoeB у штаммов L.rhamnosus.

4. Поиск и характеристика новых ТА систем у *L.helveticus*.

5. Использование ТА систем в качестве биомаркеров для изучения штаммового разнообразия лактобацилл.

Научная новизна работы

Впервые исследовано наличие, разнообразие и полиморфизм ТА систем суперсемейства RelBE у штаммов *L.rhamnosus, L.casei, L.helveticus*. Показана активность ряда систем в клетках *E.coli*. Впервые показана сложная организация оперона TA системы Yef-YoeB_{Lth} у *L.rhamnosus*, включающая 4 сайта инициации транскрипции. Впервые найдены и исследованы новые TA системы в штаммах *L.helveticus*. Впервые показано, что TA системы могут быть использованы в качестве биологических маркеров для характеристики штаммового разнообразия микробиоты человека.

Практическая значимость

Практическая значимость настоящей работы – создание метода универсальной, дешевой и быстрой молекулярно-генетической идентификации видов и штаммов лактобацилл, основанной на применении ТА систем. Предложенный нами метод видовой и штаммовой идентификации может быть использован как для характеристики отдельных штаммов, так и для характеристики сообщества микроорганизмов, например в микробиоте человека.

ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ

1.1 Общее представление о бактериях рода Lactobacillus

Классификация лактобацилл

По современной систематике род Lactobacillus входит в семейство Lactobacillaceae, порядок Lactobacillales, класс Bacilli, тип Firmicutes, царство Бактерии. Род Lactobacillus состоит ИЗ грамположительных, неспорообразующих, каталазо-отрицательных, микроаэрофильных, чаще всего неподвижных палочковидных бактерий со смешанными потребностями в питании. Длина и форма клеток может существенно различаться в зависимости от вида и штамма — от длинных тонких палочек до коротких клеток в форме коккобацилл. Палочки могут быть прямыми или искривленными, обычно они образуют цепочки. Лактобациллы, как правило, являются ацидофильными бактериями, оптимальное для их роста значение pH обычно находится в диапазоне от 5,5 до 6,2. Лактобациллы также относят к группе молочнокислых бактерий, благодаря их способности перерабатывать лактозу и прочие углеводы в молочную кислоту. В процессе своего метаболизма они способны выделять лизоцим, перекись водорода и другие продукты обмена, обладающие антибактериальной активностью. Основное их свойство образование молочной кислоты, которая препятствует развитию и размножению патогенных бактерий и грибов.

Лактобациллы представляют разнородную филогенетически группу, включающую большое количество видов и штаммов (рисунок 1). Первый филогенетический анализ лактобацилл был проведен в 1991 году Коллинсом на небольшом количестве известных на то время видов [Collins M.D. et al., 1990]. На сегодняшний день комбинация различных методов исследований помогли получить более полное представление о количестве филогенетических групп [Giovanna E.F. et al., 2007]. К настоящему времени большое количество геномов уже секвенировано и аннотировано: *L.rhamnosus* – 30 геномов, *L.plantarum* – 30, *L.fermentum* – 11, *L.casei* – 29, *L.brevis* – 13 и *L.helveticus* – 15 (данные на апрель 2015г) [http://www.ncbi.nlm.nih.gov/genome/].

Рисунок 1 – Филогенетическое дерево бактерий рода *Lactobacillus* [Giovanna E.F. et al., 2007].

Проблемы идентификации лактобацилл

Существует около 140 видов лактобацилл и они имеют сходные фенотипические и физиологические характеристики. Их геномы сильно различаются по GC-составу, что усложняет идентификацию данного рода.

На данный момент наиболее распространённым методом для идентификации видов бактерий является определение последовательности гена 16S рРНК. На этой основе разработаны родо-, группо- и видоспецифичные праймеры, амплификация с которыми в ряде случаев может проводиться одновременно в общей реакционной смеси (так называемая мультиплексная ПЦР). Данный метод в основном применим для типирования групп и отдельных видов лактобацилл, но неприменим для идентификации близкородственных видов и штаммов. Известные методы идентификации не являются универсальными и простыми в использовании и не позволяют проводить штамм-специфическую идентификацию, поскольку нуклеотидные последовательности генов. обычно используемых для групповой и видовой идентификации, полностью идентичны для разных штаммов одного вида [Song, Y. et al., 2000; Lee J. et al., 2004].

Одной из задач является создание метода универсальной и быстрой молекулярногенетической идентификации филогенетических групп, видов и штаммов лактобацилл в микробиоте человека (гастроэнтерологический тракт, вагинальная полость и др.), а также в пищевой цепочке кисломолочных продуктов. Установлено, что пробиотические свойства лактобацилл являются штаммоспецифическими.

Проблема быстрой и однозначной видовой и штаммовой идентификации лактобацилл встает при изучении состава микробиоты человека, при поиске и длительном сохранении пробиотически ценных штаммов, при сравнении видов и штаммов, полученных лабораториях. Для начальной идентификации В разных рода, филогенетической группы и вида Lactobacillus используют микробиологические и биохимические методы, однако они дают только предварительные сведения о систематическом положении данного микроорганизма и часто не позволяют отнести его к определенному виду. Для более точной идентификации микроорганизмов используют разнообразные молекулярно-генетические методы [Singh S. et al., 2009]. Эти методы можно подразделить на несколько групп.

1. Методы, не связанные с ПЦР: анализ рестрикционных фрагментов хромосомной ДНК (RLFP); разделение суммарного белка клеток в SDS-PAGE электрофорезе; ДНК-ДНК гибридизация, в том числе с использованием чипов (comparative genomic hybridization, CGH) [Markiewicz L.H. et al., 2010].

Методы, основанные на реакции ПЦР [Saito S. et al., 2011]. Используются 2. случайные праймеры (RAPD), так праймеры повторяющихся как И для последовательностей ДНК (REP-PCR, ERIC-PCR) и праймеры для определенных генов. В качестве таких генов чаще других используются гены 16S и 23S рибосомальных РНК и спейсерные районы между ними. Используются также некоторые белок-кодирующие гены: tuf (ген фактора элогации Tu), recA, hsp60 (ген белка теплового шока), rpoA (ген асубъединицы РНК-полимеразы), dnaK (ген белка теплового шока 70 kDa) [Huang C.H. et al., 2011], β -субъединицы F1F0–AT Φ синтазы [Sievers M. et al., 2003]. Широко распространен метод, объединяющий анализ рестрикционных фрагментов и ПЦР – т.н. AFLP.

3. Методы, основанные на определении нуклеотидной последовательности (НП) ДНК: определение НП отдельных генов (или их фрагментов) рибосомальной РНК и белок-кодирующих генов, перечисленных в п.2; определение одиночных нуклеотидных замен в таких генах (SNP) [Huang C.H. et al., 2011]; одновременное определение НП фрагментов нескольких белок-кодирующих генов (MLST) [Raftis E. et al., 2011].

Для идентификации вида чаще используется ПЦР с родо- и видоспецифичными праймерами, созданными по генам и межгенным спейсерам рибосомальных и белоккодирующих генов, с последующим анализом продуктов реакции в электрофорезе и определением их НП. Для идентификации штаммовой принадлежности лактобацилл чаще используются рестрикционный анализ ДНК, ПЦР с неспецифическими праймерами (RAPD, REP-PCR, ERIC-PCR), определение НП ряда генов (MLST), гибридизация с чипами (CGH).

Однако ни один из перечисленных методов не является универсальным, каждый имеет свои достоинства, недостатки, область применения и используется для анализа конкретных видов или групп видов и для решения конкретных задач. Считается, что для корректной идентификации вида и штамма следует использовать несколько молекулярных методов или несколько генов [Singh S. et al., 2009]. Поэтому важно включение в молекулярно-генетическую идентификацию лактобацилл новых генов.

10

Среда обитания лактобацилл

Лактобациллы могут быть обнаружены в растениях, субстратах растительного происхождения (силос) и ферментированной пищевой продукции (йогурт, сыр, маслины, маринады, салями). На сегодняшний день основное внимание исследователей привлекают лактобациллы как составная часть микробиоты человека [Hammes W.P. et al., 1995]. Они составляют незначительную часть нормальной микробиоты кишечника взрослого человека, приблизительно 0,01–0,6% от всех обитателей желудочно-кишечного тракта (ЖКТ), однако активно осуществляют регуляторные функции внутри популяции кишечных бактерий [Delphine S. et al., 2009].

Лактобациллы распространены по всему пищеварительному тракту: от ротовой оболочке глотки, пищевода, полости, слизистой желудка И до кишечника [TannockG.W. 1995]. Местом их наибольшего скопления является конечный отдел пищеварительного тракта. Взаимодействуя с клетками эпителия кишечника они обеспечивает процессы репарации слизистой оболочки, индуцируют образование лизоцима и активируют иммунный ответ. Бактериям представителям рода Lactobacillus также принадлежит доминирующее положение во влагалище у здоровых женщин репродуктивного возраста. Присутствие лактобацилл на наружных половых органах у женщин необходимо для защиты слизистой оболочки от патогенных факторов и обеспечения препятствия для попадания инфекций внутрь. Удельный вес лактобацилл в вагинальной полости составляет около 10²-10³ КОЕ/мл [Tannock G.W. 1995]. Содержание лактобацилл в желудочном соке составляет 10²-10³ КОЕ/мл. В толстой кишке содержит 10⁶-10⁷ КОЕ/мл, они представлены видами: L.acidophilus, L.casei, L.bulgaricus, L.plantarum, L.reuteri, L.rhamnosus и другими видами.

Определение точного видового и штаммого состава отдельных видов *Lactobacillus* в ЖКТ человека остается до сих пор большой проблемой. Большинство из обитающих в ЖКТ бактерий попадают туда из полости рта или из пищи [Berg R.D. 1996]. Были выделены основные виды лактобацилл, которые являются обитателями как ротовой полости, так и фекалий (таблица 1).

Виды лактобацилл	Фекалии	Ротовая полость	Продукты питания
L. acidophilus	+	+	
L. crispatus	+	+	
L. gasseri	+	+	
L. johnsonii	+		+
L. salivarius	+	+	
L. ruminis	+		
L. casei	+	+	+
L. paracasei	+	+	+
L. rhamnosus	+	+	+
L. plantarum	+	+	+
L. reuteri	+		+
L. fermentum	+	+	+
L. brevis	+	+	+
L. delbrueckii	+		+
L. sakei	+		+
L. vaginalis	+	+	
L. curvatus	+		+

Таблица 1. Виды лактобацилл, которые были обнаружены в фекалиях, ротовой полости и продуктах питания.

В коллекции лактобацилл выделенных из ЖКТ, вагины и ротовой полости обнаружены такие виды лактобацилл, как *L.rhamnosus*, *L.plantarum*, *L.fermentum*, *L.casei*, *L.brevis* и *L.helveticus*.

Практическое применение

Видам *Lactobacillus*, обитающим в ЖКТ, уделяется большое внимание благодаря их свойствам, положительно влияющим на здоровье. Существуют общие критерии для отбора штаммов с пробиотическим потенциалом, такие как способность выживать в среде желудка и кишечника и удерживаться на клетках эпителия кишечника, а также антагонистическая активность в отношении патогенных микроорганизмов [Monteagudo-Mera A. et al., 2012; Bautista-Gallego J. et al., 2012; Wang C.Y. et al., 2010]. Чтобы сохранить жизнеспособность после прохождения через ЖКТ, пробиотические бактерии должны быть устойчивы в желудке к низким pH (pH 2.5 – 3.5) и пепсину, желчным солям и панкреатину в верхней части кишечника [Holzapfel W.H. et al., 1998].

Другим наиболее важным свойством пробиотических бактерий является обеспечение колонизационной резистентности, т.е. способности защиты кишечной стенки от проникновения во внутреннюю среду организма патогенных бактерий. Благодаря этим свойствам лактобациллы подавляют рост и размножение поступающих извне представителей посторонней микрофлоры, предотвращают приживление последних, блокируя рецепторы клеток слизистых оболочек от адгезинов потенциально патогенных бактерий. За последние несколько лет обнаружена корреляция между состоянием пробиотического компонента микрофлоры человека и некоторыми заболеваниями, в том числе болезнью Крона и онкозаболеваниями [Cain A.M. et al., 2011]. Поэтому в последние годы большой интерес к лактобациллам проявляют именно как к компонентам лекарственных препаратов (пробиотиков) для профилактики болезней человека и животных.

Одни штаммы лактобацилл имеют промышленное значение и применяются при различных процессах ферментации, в то время как другие штаммы, обладающие пробиотическими свойствами и приносящие пользу здоровью человека, используются в коммерческих целях в качестве пробиотиков и лекарственных препаратов [Sanders M. et al., 2005] для лечения дисбактериозов разной этиологии, заболеваний полости рта, урогенитальной сферы, желудочно-кишечных расстройств, а также в составе БАДов. Ниже приведены некоторые примеры использования отечественных штаммов лактобацилл в качестве лекарств и БАДов:

- *L.helveticus* (NK1, 100аш) и *L.casei* К₃Ш₂₄ лекарственный препарат Ацилакт;
- *L.helveticus* (NK₁, NK₂, NK₅ и NK₁₂) лекарственный препарат Аципол;
- L.casei КНМ-12, L.helveticus NK₁, L.plantarum 8Р-А3 БАД Нормоспектрум;
- L.plantarum 90Т-С4 лекарственный препарат Лактобактерин и БАД Гиалакт;
- L. plantarum 8P-A3 лекарственный препарат Лактобактерин.

Показано влияние кишечной микробиоты на эмоциональное поведение, восприятие боли, сигнальные механизмы, реакцию на стресс у животных, преимущественно грызунов. Так, например, штамм *L. brevis* FPA3709, синтезирующий ГАМК, после введения его крысам оказывал антидепрессивный эффект, схожий с действием антидепрессанта флуоксетина, при этом без побочных проявлений в виде потери аппетита и снижения веса [Ко С.Ү. et al., 2013]. Введение мышам линии BALBc штамма *L.rhamnosus* JB-1 изменяло экспрессию мРНК ГАМКергических рецепторов в различных отделах мозга, а также снижало повышенный в результате стресса уровень кортикостерона в крови и уменьшало тревожное состояние животных [Bravo J.A. et al., 2011]. Введение *L. acidophilus* крысам линии Вистар приводило к снижению стрессового состояния животных в тесте принудительного плавания [Singh P.K. et al., 2012].

Эти данные позволили предположить, что аналогичный эффект кишечная микробиота может проявлять в организме человека, влияя на его эмоциональное состояние и течение психических заболеваний, что и было показано в исследованиях,

проведенных на людях-добровольцах. У людей, получавших в течение месяца пробиотическую смесь из лактобацилл *L. helveticus* R0052 и бифидобактерии *Bifidobacterium longum* R0175, заметно снизились показатели тревожности и стресса — по сравнению с теми, кто получал плацебо [Messaoudi M. et al., 2011]. У пациентов, получавших в течение 2-х месяцев пробиотик *L. casei* Shirota достоверно снизился уровень тревожности [Rao A.V. et al., 2009]. Всё это, предположительно, происходит благодаря влиянию бактерий на гипоталамо-гипофизарно-надпочечниковую эндокринную ось, чрезмерная активность которой может быть причиной хронического стресса, утомления и т. п.

1.2 ТА системы: общая характеристика и классификация

Системы токсин-антитоксин (ТА системы) – это генетические элементы, состоящие из 2-х, реже 3-х генов. Продукты генов токсинов всех известных ТА систем – это белки, в то время как антитоксины – это либо белки, либо некодирующие РНК.

ТА системы и их компоненты используются для решения различных задач в области научных исследований и биотехнологии. ТА модули рассматриваются как перспективные "мишени" для разработки антибактериальных препаратов, их потенциал предполагается использовать и для борьбы с вирусными инфекциями. Все это может способствовать борьбе с инфекционными заболеваниями [Kolodkin-Gal I. et al., 2007]. ТА системы представляют собой удобные модули для решения таких вопросов, как регуляция активности генов, реакция на стресс, персистирующее состояние клеток, апоптоз [Prozorov A.A. et al., 2010].

Первые ТА системы были охарактеризованы еще в 1980 году как молекулярные системы, которые кодируются плазмидой и обеспечивают её стабильность в ходе репликации [Gerdes K. et al., 1986]. Первой обнаруженной такой ТА системой являлась система контроля клеточной смерти (ccd), расположенная на F плазмиде *E. coli* [Ogura T. et al., 1983]. Данная система обеспечивала стабилизацию F плазмиды, приводя к гибели потомство клеток, не содержащих данную плазмиду [Jaffe A. et al., 1985]. Эта система состоит из двух генов, *ccd*A и *ccd*B, организованных в оперон. Белок CcdB – токсин, который ингибирует ДНК гиразу, а белок CcdA – антитоксин, предотвращающий летальное действие CcdB, непосредственно связываясь с ним [Tam J.E. et al., 1989; Bernard P. et al., 1993]. Если при делении клетки плазмида не наследовалась, то короткоживущий антитоксин CcdA не пополнялся синтезом *de novo*, поэтому более стабильный токсин CcdB оставался один в цитоплазме, и в результате комплекс ДНК-гиразы захватывался токсином CcdB, что приводило к гибели клетки [Bernard P. et al., 1992].

Впоследствии гомологи ТА систем плазмидного происхождения были обнаружены на бактериальных хромосомах. Обнаружены также и ТА системы, имеющие только хромосомную локализацию. Число ТА систем в бактериальном геноме может исчисляться десятками [Ramage H.R. et al., 2009]. По нуклеотидной последовательности генома можно предположить наличие около 80 ТА систем у *Mycobacterium tuberculosis*, более 70 у некоторых сине-зеленых водорослей. У некоторых протеобактерий до 2,5% ORFs могут быть ТА системами [Ramage H.R. et al., 2009; Leplae R. et al., 2011].

В то время как функции ТА систем на плазмидах были очевидны, биологическое значение хромосомных систем оставалось долгое время загадкой, и только сейчас

некоторые из предложенных ранее функций были подтверждены экспериментальными данными [Ramage H.R et al., 2009; Gupta A. et al., 2009]. Всесторонний поиск по гомологии последовательностей в базе данных и новые биоинформатические подходы позволили выявить большое количество и разнообразие TA систем. На сегодняшний день известны более 10000 предполагаемых TA модулей [Pandey D.P. et al., 2005; Leplae R. et al., 2011; Fozo E.M. et al., 2010; Sberro H. et al., 2013]. Значительно возрос интерес к ним. Число статей по TA системам составляет сотни за год.

Классификация ТА систем основана как на механизме ингибировании токсина антитоксином, так и природе антитоксина. С недавнего времени, основываясь на молекулярной природе антитоксина и характере его взаимодействия с токсином, ТА модули группируют в пять классов [Goeders N. et al., 2014]. В типе I и III ТА модулей антитоксин – это малая некодирующая РНК, в то время как антитоксины оставшихся классов – небольшие белки.

1.2.1 Системы токсин-антитоксин І типа

Тип I представляет систему, в которой токсин – это гидрофобный белок, состоящий из 19 – 38 остатков аминокислот [Fozo E.M. et al., 2008]; белок проявляет свою токсичность, образуя поры в мембранах клетки [Van Mederen 2009]; исключением является SymE токсин, который является PHКазой. Антитоксин в данной системе – это маленькая (50-200 нуклеотидов) нетранслируемая PHK (sPHK), которая подавляет экспрессию токсина [Gerdes K. et al., 1986].

В ТА системах I типа взаимодействие токсина и антитоксина осуществляется при комплементарном спаривании оснований между мРНК токсина и РНК антитоксина, за счет чего происходит формирование молекулы РНК, состоящей из двух комплементарных цепей. В конечном счете этот комплекс становится мишенью для разрушения РНКазами клетки (рисунок 2) [Gerdes K. et al., 2007]. В некоторых ТА системах I типа (например, SymR/SymE) образование 2-х цепочечной РНК происходит в проксимальной части мРНК, включающей SD последовательность, что препятствует инициации трансляции. В других системах (например, TxpA/RatA *Bacillus sibtilis*) гены токсина и антитоксина ориентированы в противоположные стороны и 2-х цепочечная РНК образуется в проксимальной части мРНК, что препятствует экспрессии токсина.

Рисунок 2 – Структурная организация ТА систем I типа [Wen Y. et al., 2014].

Система типа I иногда включает третий компонент. В хорошо охарактеризованной Hok-Sok системе, вдобавок к hok – токсину и sok – антитоксину, существует третий ген, названный *mok*. Открытая рамка считывания третьего компонента TA системы совпадает с открытой рамкой считывания токсина и трансляция токсина зависит от трансляции третьего компонента [Faridani O.R. et al., 2006]. Sok антитоксин регулирует трансляцию Hok токсина не прямо, а посредством подавления транляции Mok белка [Fozo E.M. et al., 2008].

Системы данного типа широко распространены на плазмидах и хромосомах бактерий. Стоит отметить, что большинство охарактеризованных антитоксинов (sPHK), кодируемых плазмидами, обладают высокой комплементарностью к соответствующим мРНК токсинов, в то время как хромосомно-кодируемые sPHK имеют ограниченную комплементарность. Многие TA системы I типа многократно повторены на хромосомах бактерий: так, *hok* ген повторен на хромосоме *E.coli* от 4 до 15 раз. Вероятно, эволюция систем I типа происходила преимущественно путем дупликаций, а не горизонтального переноса [Fozo E.M. et al., 2008].

1.2.2 Системы токсин-антитоксин II типа

ТА система типа II является наиболее изученной с биологической точки зрения и наиболее многочисленной. К ТА системам II типа относятся MazE/MazF, RelB/RelE, HipA/HipB, VapB/VapC и другие. Токсин и антитоксин являются белками. Гены токсина и антитоксина объединены в оперон. Общие черты оперона II типа – это небольшой размер обоих генов (80-630 пар нуклеотидов) и небольшой регион, который либо разделяет эти два гена между собой, либо создаёт участок, на котором эти гены могут перекрываться (от

-20 до +30 нуклеотидов) [Pandey D.P. et al., 2005]. Оперон ТА модулей II типа обычно включает две открытые рамки считывания, где первый ген кодирует антитоксин. Однако, известны исключения из стандартной организации оперона. К примеру, ТА модуль HigB/HigA, где ген токсина *higB* расположен перед геном антитоксина *higA* [Tian Q.B. et al., 2001]. Транскрипция оперона саморегулируется путем связывания антитоксина или комплекса токсин-антитоксин с промотором [Bukowski M. et al., 2011]. При взаимодействии токсина и антитоксина формируется неактивный комплекс токсинантитоксин (белок-белок), при этом белок антитоксина принимает компактную структуру [Makarova K.S. et al., 2009] (рисунок 3). Комплекс токсин-антитоксин, в котором токсин не активен, ответственен за негативную саморегуляцию оперона.

Рисунок 3 – Структурная организация ТА систем II типа [Wen Y. et al., 2014].

В стрессовых ситуациях антитоксин разрушается клеточными протеазами (Lon и Clp) [Tsuchimoto S. et al., 1992; Van Melderen L. et al., 1994; Lehnherr H. et al., 1995], токсин освобождается из токсин-антитоксин комплекса в клетке и, в конечном счете, происходит ингибирование роста или гибель клетки. По своему механизму действия токсины II типа разнообразны, они подавляют различные стадии трансляции, репликацию, синтез пептидогликанов [Aizenman E. et al., 1996; Christensen S.K. et al., 2004].

Антитоксины II типа – маленькие нестабильные белки, состоящие из 2-х доменов: ДНК-связывающего N-концевого и домена связывания с токсином, C-концевого [Santos-Sierra S. et al., 2002; Smith J.A. et al., 2004; Bernard P. et al., 1991]. У антитоксина MqsA, наоборот, ДНК-связывающий домен расположен в C-концевой части, а токсинсвязывающий – в N-части белка [Brown B.L. et al., 2009]. Антитоксины *E.coli* O157:H7 РааА и эпсилон-антитоксин плазмиды *Streptococcus pyogenes* pSM19035 не имеют ДНК- связывающего домена; в этих ТА системах, помимо токсина и антитоксина, есть третий компонент, являющийся транскрипционным регулятором. ТА модуль pSM19035 состоит из трех компонентов, ω - ε - ζ . В отличие от других ТА систем II типа, ни токсин ζ , ни антитоксин ε , ни комплекс $\zeta 2\varepsilon^2$ не регулируют экспрессию оперона. Активность промотора оперона Р ω регулируется димером ω^2 , глобальным регулятором транскрипции [Camacho A.G. et al., 2002]. У *E. coli* O157:H7 первый ген оперона *paaR-paaA-parE* необходим для контроля транскрипции ТА модуля. Однако, в противоположность ω - ε - ζ , комплекс TA ParE-PaaA также вовлечен в регуляцию собственной транскрипции, хотя действует значительно слабее ParR. В системе PasA/PasB/PasC плазмиды pTF-FC2 *Thiobacillus ferrooxidans* третий компонент, PasC, не участвует в регуляции экспрессии оперона, но способствует образованию комплекса токсин-антитоксин [Smith A.S. et al., 1997].

Обычно взаимодействие токсина и антитоксина чрезвычайно специфично: токсин взаимодействует только со своим родственным антитоксином. Эта специфичность взаимодействия может быть нарушена одиночной мутацией: одна аминокислотная замена в белке Тхе токсина *Enterococcus faecium* делает возможным его взаимодействие с неродственным антитоксином YefM [Polom et al., 2013; Goeders N. et al., 2014]. Как исключение, перекрестное взаимодействие между компонентами различных TA систем MazE-VapC и MazEF описано у *M. tuberculosis* [Zhu L. et al., 2010].

Первоначально II тип TA систем был сгруппирован в 8-14 семейств, основываясь на сходстве аминокислотной последовательности белков токсинов и антитоксинов [Pandey D.P. et al., 2005; Park S.J. et al., 2013]. Предполагалось, что в каждом семействе токсин связан с конкретным антитоксином. Однако, на данный момент есть много данных о существовании гибридных систем, где TA локус содержит токсин из одного семейства, а антитоксин из другого. Функциональность некоторых таких гибридных систем была доказана [Grady R. et al., 2003; Schmidt O. et al., 2007; Unterholzner S.J. et al., 2005]. Поэтому было предложено классифицировать семейства токсинов и антитоксинов независимо друг от друга в 13 суперсемейств токсинов и в 20 суперсемейств антитоксинов по AK последовательности и сходству третичной структуры белков [Leplae R. et al., 2011]. Сидересии ингибировали рост клеток *E. coli*, но экспериментально обнаружить антитоксины, блокирующие действие этих токсинов, не удалось [Leplae R. et al., 2011].

Интересно отметить, что перетасовки токсина/антитоксина могут возникать и между различными типами TA систем. К примеру, токсин ToxN III типа TA системы ToxI/ToxN имеет сходную 3D структуру с токсином II типа семейства MazF [Blower T.R. et al., 1981].

Существует база данных по системам II типа, основанная на экспериментальных и биоинформатических данных – TADB [<u>http://202.120.12.135/TADB2/index.php</u>; Shao et al., 2011]. Предполагается, что эволюция систем II типа осуществлялась преимущественно путем горизонтального переноса [Leplae R. et al., 2011].

1.2.3 Системы токсин-антитоксин III типа

Первая ТА система III типа **ToxI-ToxN** обнаружена на плазмиде pECA1039 патогена растений Pectobacterium atrosepticum [Blower T.R. et al., 1981]. Изначально она была описана как система защиты бактерий от бактериофаговой инфекции [Fineran P.C. et al., 2009]. Антитоксин III типа, подобно таковому I типа, также является sPHK, но при этом модель взаимодействия токсина и антитоксина иная. Данный локус кодирует белок токсина ToxN (19,7 кДа), перед токсином имеются короткий палиндром и повторяющийся мотив, состоящий из 5,5 прямых тандемных повторов по 36 нк. Эта последовательность и является геном антитоксина toxI. Инвертированный повтор является транскрипционным терминатором и регулирует относительное количество транскриптов sPHK антитоксина и мРНК токсина. ТохN имеет РНКазную активность и разрезает транскрипт toxI/toxN по прямым повторам, позволяя при этом освободиться 36-нуклеотидному РНК- антитоксину [Blower T.R. et al., 1981]. В противоположность ТА системам I типа, РНК антитоксина нейтрализует белок токсина непосредственно связываясь с ним, формируя комплекс РНКбелок. Исследование кристаллической структуры ToxIN комплекса обнаружило гетерогексамерное образование из трех молекул белка ToxN и трех молекул PHK ToxI (рисунок 4) [Blower T.R. et al., 1981].

Рисунок 4 – Структурная организация ТА систем III типа [Wen Y. et al., 2014].

При филогенетическом изучении в общей сложности 125-ти предполагаемых систем III типа было идентифицировано 3 независимых семейства toxIN, cptIN, и tenpIN [Blower T.R. et al., 1981]. Первое семейство содержит ToxIN из *P.atrosepticum*, *B. thuringiensis* и их гомологи. Когда давали название семейству, было решено сохранить «IN» в номенклатуре, где каждый антитоксин имеет в названии «I», как ингибитор, а каждый токсин обозначается «N». Если использовать эту универсальную стандартизацию обозначения, то при открытии новых TA систем III типа будет ясно, какой из генов относится к токсину, а какой - к антитоксину. Второе семейство содержит локус из *Coprococcus catus* GD/7, поэтому данное семейство названо CptIN (*CoPrococcus* тип III Inhibitor/toxiN; произносится как 'cap-tin'). Третье семейство содержит локус из *P. luminescens* subsp. *laumondii* TT01, поэтому это семейство было названо TenpIN (тип III ENdogenous to *Photorhabdus* Inhibitor/toxiN).

Большинство систем III типа кодируется хромосомами, и только приблизительно 15% ToxIN и TenpIN систем кодируются плазмидами; одна система ToxIN обнаружена в геноме профага. Функциональность некоторых систем была проверена на *E. coli* путем оценки токсичности предполагаемого белка токсина и способности родственных повторов антитоксина ингибировать летальный эффект. Эволюция и распространение данной системы связаны с горизонтальным переносом [Blower T.R. et al., 2001; Blower et al., 2012].

1.2.4 Системы токсин-антитоксин IV типа

Этот тип TA систем крайне малочисленный. К TA системам типа IV был отнесен модуль *E.coli yeeU/yeeV* (также названной *ctbA/ctbB*) [Masuda H. et al., 2012]. Функциональный анализ этого модуля показал, что токсин YeeV взаимодействует с белками клетки MreB и FtsZ и тем самым препятствует их полимеризации и сборке цитоскелета. Антитоксин YeeU противодействует YeeV, стабилизируя полимеры MreB и FtsZ [Masuda H. et al., 2012]. Похожая модель действия была показана для *ctbA/ctbB* (*ygfX/ygfY*), другого TA модуля у *E.coli* [Masuda H. et al., 2012]. В то время как в других типах TA систем токсин и антитоксин взаимодействуют либо на уровне PHK, либо на белковом уровне, у токсина и антитоксина IV типа нет прямого взаимодействия (рисунок 5).

Рисунок 5 – Структурная организация ТА систем IV типа [Wen Y. et al., 2014].

1.2.5 Системы токсин-антитоксин V типа

К ТА системам V типа относится только одна система, GhoS/GhoT обнаруженная в *E. coli*. Белок антитоксина GhoS обладает специфической энодорибонуклеазной активностью для расщепления мРНК токсина GhoT, это и предотвращает трансляцию токсина (рисунок 6) [Wang X. et al., 2012].

Рисунок 6 – Структурная организация ТА систем V типа [Wen Y. et al., 2014]

1.3 Механизм действия и биомишени токсинов ТА систем

Описание мишеней клетки, на которые действуют токсины, имеет фундаментальное значение для понимания роли ТА систем в жизнедеятельности бактерий. Все токсины I типа (за исключением одного токсина, SymE) образуют поры в мембранах клеток и ингибируют синтез АТФ. Мишени токсинов II типа более разнообразны (таблица 2).

Таблица 2. Механизм действия и биомишени некоторых токсинов TA систем [Unterholzner S.J. et al., 2013].

Токсин	Антитоксин/ вид	Тип	Механизм действия	Процесс в клетке
Hok	Sok/RNA	Ι	Интеграция во внутреннюю	синтез АТФ
			клеточную мембрану	
TisB	IstR-1/RNA	Ι	Интеграция во внутреннюю	синтез АТФ
			клеточную мембрану	
SymE	SymR/RNA	Ι	Расщепление мРНК	трансляция
CcdB	CcdA / Protein	II	Интеграция ДНК-гиразы	репликация
ParE	ParD / Protein	II	Интеграция ДНК-гиразы	репликация
MazF	MazE /Protein	II	Расщепление рибосомо-	трансляция
			независимой мРНК и гена 16S	
			рРНК	
MazF-mt6	MazE-mt6 /	II	Расщепление рибосомо-	трансляция
	Protein		независимой мРНК и гена 23S	
			рРНК	
Kid	Kis / Protein	II	Расщепление рибосомо-	трансляция
			независимой мРНК	
HicA	HicB / Protein	II	Расщепление рибосомо-	трансляция
			независимой мРНК	
RelE	RelB / Protein	II	Расщепление рибосомо-	трансляция
			связанной мРНК	
VapC	vapB / Protein	II	Расщепление тРНК	трансляция
Doc	Phd / Protein	II	Связывание с 30s	трансляция
			рибосомальной субъединицей	
RatA	RatB / Protein	II	Связывание с 50s	трансляция
			рибосомальной субъединицей	
HipA	HipB /Protein	II	Фосфорелирование of eF-Tu	трансляция
ζ	ε / Protein	II	Фосфорелитрование of	синтез
			UDP-N-acetylglucosamine	пептидогликана
ToxN	Toxi / RNA	III	Расщепление РНК	трансляция
Yeev	YeeU / Protein	IV	Ингибирование полимеризации	действие на
			FtsZ и MreB	цитоскелет
CptA	CptB / Protein	IV	Ингибирование полимеризации	действие на
			FtsZ и MreB	цитоскелет
GhoT	GhoS /Protein	V	Интеграция во внутреннюю	синтез АТФ
			клеточную мембрану	

Большая часть токсинов функционирует как мРНК интерферазы, либо рибосомозависимые, либо независимые. Типичные примеры токсинов, которые расщепляют свободную мРНК: MazF [Zhang Y. et al., 2003], Kid [Muñoz-Gomez A.J. et al., 2005], ChpBK [Zhang Y. et al., 2005], MqsR [Yamaguchi Y. et al., 2009] and HicA [Jorgensen M.G. et al., 2009]. Многие токсины имеют определенные сайты расщепления. К примеру, у НісА нет конкретных консенсусных узнаваемых мотивов, Кіd показывает преимущество для сайта UA(A/C), ChpBK, MqsR и MazF специфично расщепляют в сайтах UAC, GCU и ACA соответственно. Для различных MazF токсинов существуют различные узнаваемые мотивы, которые состоят из 3, 5 или 7 нуклеотидов [Yamaguchi Y. et al., 2012]. VapC токсины (II тип) Shigella flexneri и Salmonella enterica проявляют эндорибонуклеазную активность на тРНК [Winther K.S. et al., 2011]. Маг также может действовать на 3' конец 16S рРНК внутри 30S рибосомальной субъединицы, удаляя 43 нуклеотида, содержащих anti-Shine-Dalgarno последовательность, необходимую для инициации трансляции [Moll I. et al., 2012]

Токсин RelE – наиболее хорошо охарактеризованный пример PHK интерферазы, расщепляющей мPHK рибосомозависимым способом. RelE расщепляет мPHK в сайте A рибосомы [Christensen S.K. et al., 2003]. Существует еще и другой механизм, по которому TA системы могут вмешиваться в синтез мPHK, изменяя рибосомальную активность через непосредственное взаимодействие с субъединицами рибосомы. Непосредственная связь токсина Doc с 30S рибосомальной субъединицей останавливает элонгацию трансляции [Liu M. et al., 2008]. Схожее действие было показано для токсина II типа RatA TA системы RatA/RatB. Он связывается с 50S рибосомальной субъединицей, что мешает ее объединению с 30S рибосомальной субъединицей и формированию комплекса 70S рибосомы [Zhang Y. et al., 2011]. В отличие от перечисленных токсинов, токсин HipA является протеинкиназой и непосредственно ингибирует трансляцию, фосфорилируя глютамил-тPHK-синтетазу и тем самым инактивируя ее [Germain E. et al., 2013]. Киназой является и Doc токсин фага P1, фосфорилирующий фактор элонгации EF-Tu, предотвращая его взаимодействие с тPHK [Castro-Roa D. et al., 2013].

Токсин II типа ζ TA системы ω - ε - ζ демонстрирует киназную активность, но его клеточная мишень отличается от HipA и Doc: ζ фосфорилирует пептидогликан, предшественник UDP-N-ацетилглюкозамина (UNAG), который ингибирует MurA, фермент, катализирующий инициацию синтеза пептидогликана, и соответственно подавляет формирование клеточной стенки бактерии [Schumacher M.A. et al., 2009].

Внутренняя мембрана клеточной стенки может также служить мишенью для токсинов ТА систем. Большинство систем I типа кодируют маленький, гидрофобный белок, который функционирует подобно фагу, образуя поры в мембране клетки [Brantl S. et al., 2012], что приводит к потере потенциала мембраны и соответственно ухудшает синтез АТФ. Схожий механизм также наблюдается у GhoT, токсина V типа TA системы *ghoS/ghoT*. GhoT – маленький высоко гидрофобный белок с двумя предсказанными трансмембранными доменами, его введение в клетку вызывает повреждение мембраны и лизис клетки [Wang X. et al., 2012].

Цитоскелет является мишенью для токсина IV типа YeeV, который взаимодействует с белком FtsZ и ингибирует его полимеризацию и ГТФ-азную активность. Для YeeV также показано, что он разрушает полимеры MreB, наиболее важные для деления и поддержания формы клетки [Tan Q. et al., 2011]. Схожие результаты были показаны для токсина CptA [Masuda H. et al., 2012].

Токсины ТА систем также могут ингибировать репликацию ДНК. Для токсинов II типа ParE и CcdB было показано, что они ингибируют GyrA, субъединицу топоизомеразы II типа. Ингибирование гиразы вызывает разрыв двунитевой ДНК, активирует SOS-ответ и приводит к програмированной гибели клетки. Механизмы действия этих двух токсинов различны: для действия ParE2 *Vibrio cholerae* необходима АТФ [Yuan J. et al., 2010; Bernard P. et al., 1992]. Необходимо подчеркнуть, что большинство токсинов, включая HipA, StbE, и RelE не вызывают гибель клетки, но приводят к статическому состоянию, в котором клетки все еще живы, но не в состоянии размножаться, т.е. переводят ее в персистирующее состояние.

Представление о мишенях действия можно отнести и к некоторым антитоксинам, способным регулировать экспрессию генов других оперонов. Антитоксин *E.coli* MqsA негативно регулирует экспрессию гена *rpoS*, сигма-фактора стрессового ответа, а также ряда других генов, в том числе связанных с образованием биопленок [Soo V.W. et al., 2010]. Регулировать активность гена *rpoS* может также антитоксин II типа DinJ [Hu Y. et al., 2010]. Биоинформатический поиск палиндромов, с которыми связывается HipB антитоксин, позволяет предполагать, что он регулирует транскрипцию не менее 33 генов, имеющих самые разные функции [Lin C.Y. et al., 2013].

1.4 Функции ТА систем

На данный момент функции ТА систем, находящихся на плазмидах, более-менее ясны, в то время как роль широко распространенных хромосомных ТА систем в жизнедеятельности бактериальной клетки во многом остаётся непонятной [Brantl S. et al., 2012].

Первоначально ТА система была охарактеризована в 1980 году как молекулярная система, которая находится на плазмиде, обеспечивая ее устойчивость [Gerdes K. et al., 1986; Ogura T. et al., 1983]. Если в дочерних клетках происходит потеря плазмиды, то нестабильный антитоксин разрушается, стабильный белок токсина начинает свое действие, подавляя рост клеток, не содержащих данную плазмиду. Это явление носит название "post-segregational killing" (PSK) [Faridani O.R. et al., 2006; Gerdes K. et al., 2000].

Некоторые ТА системы на хромосоме могут выполнять аналогичную функцию и обеспечивать устойчивость суперинтегронов. Так, введение в хромосому *E. coli* модулей RelBE и ParDE из *Vibrio vulnificus* приводило к стабилизации крупных участков ДНК [Szekeres S. et al., 2007]. ТА система MosAT стабилизировала в хромосоме *Vibrio cholerae* интегративный конъюгативный элемент [Wozniak R.A. & Waldor M.K. 2009]. Подобные функции, выполняемые ТА системами в клетках патогенных микрооранизмов, могут стабилизировать островки патогенности и обусловливать вирулентность микроорганизмов (см. ниже).

Хромосомные ТА модули также могут предотвращать вторжение в клетку фагов, как, например, система *E.coli* RnlAB [Koga M. et al., 2011].

Для многих TA системы показано их участие в формировании состояния персистентности, т.е. способности части клеток генетически гомогенной популяции входить, в стрессовых ситуациях, в метаболически неактивное состояние, позволяющее им выжить в данных условиях; этим свойством обладает не отдельная клетка, а популяция клеток, разделяющаяся в стрессовых условиях на две части (бимодальное развитие): часть клеток гибнет, другая часть впадает в персистирующее состояние и выживает – в том числе, при действии антибиотиков. Суперэкспрессия токсина HipA *E.coli* увеличивала число персистирующих клеток, тогда как делеция оперона *hipAB* резко уменьшала [Keren I. et al., 2004]. Число персистирующих клеток уменьшалось также при делеции генов токсинов *tis*B и *mqs*R [Dorr T. et al., 2010; Keren I. et al., 2004].

В ряде работ израильских ученых было показано, что TA система MazEF *E.coli* вызывает программированную гибель клеток. При кратковременном воздействии на густую культуру клеток (≥ 10⁸ KOE) стрессовых факторов в сублетальных дозах –

тиминового голодания [Engelberg-Kulka H. et al., 2005], фаговой инфекции [Hazan R. et al., 2004], обработки антибиотиками [Sat B. et al., 2001] – происходит гибель до 90% клеток; у штаммов с делецией *maz*EF оперона гибели клеток нет. Гибель клеток усиливают quorumsensing пептиды (QS), иначе названные exracellular death factor (EDF) – небольшие пептиды (5-16 аминокислотных остатков), усиливающие эндорибонуклеазную активность MazF токсина [Kumar S. et al., 2013]. Эти работы не были подтверждены в других лабораториях и выводы авторов подвергаются сомнению, т.к. многие исследования свидетельствуют о бактериостатическом, а не бактерицидном действии MazEF системы [Maisonneuve E. et al., 2011].

Показана связь ТА систем с процессом образования биопленок [Wang X. et al., 2011], однако механизмы, лежащие в основе этой связи, не ясны. Биопленки – сообщества бактерий одного или нескольких видов, погруженные во внеклеточный матрикс и прикрепленные к биотической или абиотической поверхности. Биопленки – альтернатива планктонному состоянию популяции бактерий. Бактериальные клетки в составе биопленки чрезвычайно устойчивы к действию различных бактерицидных факторов, в том числе к действию антибиотиков. Многие хронические инфекции связаны со способностью патогенных бактерий (Pseudomonas aeruginosa, М. *tuberculosis*) образовывать в организме человека биопленки. ТА система E.coli b3022 MgsR/MgsA подавляет формирование биопленок. При деградации MqsA антитоксина способность бактерий образовывать биопленки резко возрастает; вероятно, это является следствием того, что MqsA белок репрессирует активность многих генов стрессового ответа [Wang X. et al., 2013]. Образование биопленок уменьшалось у Shewanella oneidensis и E.coli при инактивации гена токсина hipA; в данном случае это было результатом уменьшения выделения внеклеточной ДНК, являющейся адгезивной основой при образовании биопленок [Theunissen S. et al., 2010].

Неоднократно отмечалась связь между наличием ТА систем у патогенных бактерий и их вирулентностью. Отмечена корреляция между числом ТА модулей и вирулентностью бактерий [Georgiades K. & Raoult D. 2011]. В частности, ТА система MazEF широко распространена на плазмидах ванкомицин-устойчивых энтерококков [Moritz E.M. & Hergenrother P.J. 2007; Sadeghifard N. et al., 2014]. Делеция VapBC модуля у *Haemophilus influenza* ведет к резкому уменьшению вирулентности в опытах на культурах клеток и на животных [Ren D. et al., 2012]. В ряде случаев установлено, что ТА модули стабилизируют плазмиды, обеспечивающие вирулентность штаммов. Это показано для MvpAT системы на плазмиде *Shigella flexneri* Pmysh6000 [Saeed S. et al., 2000]; HigBA системы на плазмиде

Proteus vulgaris Rts1 [Hurley J.M. & Woychik N., 2009]; ω -є-ζ системы на плазмиде pSM19035 *Streptococcus pyogenes* [Mutschler H. & Meinhart A., 2011]. У *Staphylococcus aureus* механизм участия TA системы MazEF в патогенезе более сложен. Токсин MazF узнает специфическую последовательность PHK, преимущественно свойственную мPHK белков вирулентности, в том числе белка SraP; кроме того, экспрессия этого белка находится под контролем MazE антитоксина [Zhu L. et al., 2009]. Выше было сказано о связи TA систем с персистирующим состоянием бактерий. Именно пресистирующее состояние латентных инфекций, нечувствительное ко многим антибиотикам, затрудняет их лечение. Показана связь между наличием TA систем и способностью к переходу в персистирующее состояние у возбудителей туберкулеза - микобактерий [Demidenok O.I. et al., 2014]

Как было сказано в предыдущем разделе, изменение транскрипции и/или трансляции антитоксина, приводящее к разрушению комплекса токсин-антитоксин и активации токсина, является следствием реакции бактериальной клетки на стресс. Реакция на стресс, переход в персистирующее состояние и состояние биопленок - это тесно связанные между собой процессы, затрагивающие общую регуляторную систему бактерий. Именно с общей регуляторной сетью, вероятно, связана основная биологическая роль ТА систем, однако закономерности этих процессов до конца не изучены. Хотя ряд вопросов относительно функций хромосомных ТА систем остаётся не решенным, их роль в клетке не столь загадочна, как это было много лет назад.

1.5 Области применения ТА систем

Поскольку ТА системы повсеместно присутствуют в бактериальных геномах и имеют значительный потенциал для подавления роста или даже убивают клетку, то данные системы были предложены в качестве потенциальных мишеней и активных компонентов при разработке антибактериальных препаратов [Williams J.J. et al., 2012]. Изза белковой природы антитоксинов систем II типа они, по-видимому, являются наиболее реальными потенциальными соединениями для активации соответствующих токсинов. Наиболее прямолинейный подход для активации токсина будет у препарата, который разрушает ТА комплекс или предотвращает его образование и непосредственно активирует токсин. Кроме того, активация клеточных протеаз приводит к повышенной деградации антитоксина и тем самым активирует токсин. В подобных работах для обеспечения эффективности должна быть использована ТА система, которая широко распространена в штаммах патогенных бактерий. Описаны пептиды, препятствующие in vitro образованию ТА комплекса между компонентами ТА системы PemIK B.anthracis [Agarwal S. et al., 2010]. В другой работе были синтезированы пептиды – аналоги CcdB токсина E.coli, - которые in vitro подавляли активность ДНК-гиразы и топоизомеразы IV [Trovatti E. et al., 2008] Токсин ζ (дзета) из системы ω-ε-ζ плазмиды pSM19035 фосфорилирует предшественник пептидогликана UNAG, что ведет к ингибированию белка MurA И синтеза пептидогликана. Было предложено использовать фосфорилированный UNAG-3Р в качестве антибиотика [Mutschler H. et al., 2011].

ТА системы могут быть также применены в генной терапии вирусных инфекций. Некоторые токсины с эндонуклеазной активностью, например, MazF, вызывают гибель эукариотических клеток. Недавно был разработан ретровирусный вектор, содержащий *mazF* ген *E.coli* под контролем TAR промотора из ВИЧ-1. Инфекционный цикл ВИЧ начинается с экспрессии вирулентного Tat-белка, который связывается с TAR последовательностью для того, чтобы вызвать транскрипцию всего генома ВИЧ-1. Клетки, содержащие TAR-*mazF*, в присутствии ВИЧ-1 экспрессируют MazF, который, в свою очередь, эффективно расщепляет мРНК вируса и тем самым предотвращает репликацию ВИЧ-1 *in vivo* в этих клетках [Chono H. et al., 2011]. Токсин MazF был также использован для борьбы с вирусом гепатита С в составе т.н. зимоксина (zymoxin). Зимоксин состоял из соединенных белков токсина и соответствующего антитоксина и содержал сайт узнавания вирусной сериновой протеазы NS3. При попадании в клетку, зараженную вирусом, зимоксин подвергался специфическому действию протеазы, происходило высвобождение MazF токсина и гибель клетки [Shapira A. et al., 2012].

1.6 Разнообразие ТА систем II типа

На сегодняшний день для ТА систем II типа описано 13 суперсемейств генов токсинов и 20 суперсеместв генов антитоксинов (таблица 3) [Pandey D.P. et al., 2005; Jorgensen M.G. et al., 2009]. Для трех семейств II типа, RelBE, ParDE и HigBA, было предположено их филогенетическое сходство на основе гомологии их нуклеотидных последовательностей [Tsilibaris V. et al., 2007]. Между другими системами II типа - CcdAB и ParDE - не предполагается никакого эволюционного родства, хотя токсины данных систем имеют одинаковую мишень, а именно ДНК-гиразу. Также выяснилось, что имеется очень большое структурное сходство между токсинами систем CcdAB и Kis/Kid (ParD), хотя первый ингибирует активность ДНК-гиразы, в то время как второй является иРНК интерферазой. Подобное сходство возникает из-за присутствия в структуре молекул ядра из бета-слоя. Однако, наличие бета-слоя в данном случае скорее связано со способностью формировать димеры [Miller S. et al., 1989], нежели с эволюционными или функциональными взаимоотношениями. Так же установлено, что помимо семейств существуют еще и одиночные гены токсинов.

Семейс тво	Оперон	Токсин	Анти- токсин	Активность	Механизм токсичности
ccdAB	ccdAB	CcdB	CcdA	Ингибитор ДНК гиразы	Подавление транскрипции
parDE	parDE	ParE	ParD	Ингибитор ДНК гиразы	Подавление транскрипции
phd/ doc	phd/doc	Phd	Doc	Связывается с 30S рибосомной субъединицей	Ингибитор трансляции
yafNO	yafNO	YafO	YafN	Связывается с 30S рибосомной субъединицей	Ингибитор трансляции
mazEF	mazEF (chpAK)	MazF (ChpK)	MazE (ChpA)	Эндорибонуклеаза	Ингибитор транслянии
	kis/kid (parD)	Kid	Kis	Эндорибонуклеаза	Ингибитор трансляции
	pemIK	PemK	PemI	Эндорибонуклеаза	Ингибитор трансляции
	chpBIK	ChpBK	ChpBI	Эндорибонуклеаза	Ингибитор трансляции
	mazEF- mt1 – mazEF- mt7	MazF-mt1 – MazF - mt7	MazE-mt1 – MazE- mt7	Эндорибонуклеаза	Ингибитор трансляции

Таблица 3. Семейства типа II ТА систем.

					и с
	mazEFSa	MazFSa	MazESa	Эндорибонуклеаза	Ингибитор
	TITO	D HG	D 10		трансляции
	pemIKSa	PemKSa	PemISa	Эндорибонуклеаза	Неизвестно
		YdcE			
relBE	relBE	RelE	RelB	Эндорибонуклеаза,	Ингибитор
				расщепление иРНК в А	трансляции
				сайте рибосомы	
	yefM-	YoeB	YefM	Эндорибонуклеаза,	Ингибитор
	yoeB			расщепление иРНК в А	трансляции
	5			сайте рибосомы	1
	vgjNM	YgjN	YgjM	Эндорибонуклеаза,	Ингибитор
	, 23	6	4	расшепление иРНК в А	транслянии
				сайте рибосомы	r ,
	voiUT	YoiII	YoiT	Энлорибонуклеаза	Ингибитор
	$(mas \mathbf{R} \mathbf{\Delta})$	(MasR)	$(Mas \Delta)$	расшепление иРНК в А	транслянии
	(inqsicity)	(indate)	(ingsri)	сайте рибосоми	трансляции
	din I vofO	VofO	DinI	Эннорибоникнорор	Ингибитор
	unij-yaiQ	TaiQ	DIIIJ	Эндориоонуклеаза,	ингибитор
				расщепление ирнк в А	трансляции
				саите риоосомы	
	pasB	PasB	PasA	Эндориоонуклеаза,	
				расщепление иРНК в А	
				сайте рибосомы	
		StbE	StbD	Эндорибонуклеаза,	
				расщепление иРНК в А	
				сайте рибосомы	
		Txe	Axe	Эндорибонуклеаза,	
				расщепление иРНК в А	
				сайте рибосомы	
		YahV		Эндорибонуклеаза,	
				расщепление иРНК в А	
				сайте рибосомы	
	masAR	MasR	MasA	Энлорибонуклеаза.	
	1	1	1	расшепление иРНК в А	
				сайте рибосомы	
higBA	higBA	HioR	HigA	Энлорибонуклеаза	Ингибитор
ingDir	ingbri	Ingb	Ingri	связывание с	транслянии
				рибосомой	трансляции
		PnlA		Эннорибонулгараза	Ингибитор
		KIIA		эндориоонуклеаза,	троионации
		VarC	VerD		Трансляции
vapBC	vapBC	vapC	vарв	Эндориоонуклеаза,	ингиоитор
6		4		тасщепление тРНК	трансляции
ζε	ζε	ς	3	Фосфотрансфераза,	Ингибирует
				Фосфорилирует UDР-	пептидогликано
				Glc-Nac	вый синтез
hipBA	hipBA	HipA	HipB	Фосфорилирует фактор	Ингибитор
				элонгации EF-Tu	трансляции
hicAB	hicAB	HicA	HicB	Эндорибонуклеаза	Ингибитор
	(yncN/ydc	(YncN)	(YdcQ)		трансляции
	O)				

Ранее были описаны основные механизмы регуляции ТА комплекса. Существуют и другие более интересные способы регуляции активности ТА систем:

▶ взаимодействие между системой MazEF и локусом RelA, который кодирует ppGpp – сигнал аминокислотного голодания. Локус MazEF в данном случае расположен после локуса RelA и транскрибируется совместно с ним, когда экспрессия последнего активируется [Aizenman E. et al., 1996; Christensen S.K. et al., 2003];

SOS-индуцированные TA система YafNO;

▶ активация ТА систем может происходить и с помощью quorum sensing; подобный механизм был показан для MazEF систем в *E.coli*;

каскадная активация ТА систем;

на примере системы MqsRA было показано, что её ТА комплекс является необходимым активатором гена токсина CspD;

был обнаружен случай перекрестной регуляции гомологичных систем, когда
ТА комплекс одной системы связывался с регуляторной последовательностью другой;

токсины и антитоксины из разных семейств могут взаимодействовать, между собой. Например гены из RelE/ParE суперсемейств связаны с генами антитоксинов RelB, Phd, HigA, PasA [Yang M. et al., 2010].

ТА системы хорошо изучены на грамотрицательных бактериях, прежде всего у *E.coli*. На грамположительных бактериях ТА системы II типа обнаружены и в основном изучаются на представителях родов *Streptococcus Staphylococcus, Enterococcus, Bacillus*, а также у слабо грам-положительного рода *Mycobacterium*.

Верхние дыхательные пути человека являются естественной средой обитания для патогенного вида *S. pneumonie*, отсюда эти бактерии распространяются в другие части тела хозяина. Увеличение вирулентности и устойчивости пневмококков к антибиотикам может влиять на эпидемиологию вида [Kadioglu A. et al., 2008]. Устойчивость и персистирующее состояние бактерий часто связаны с наличием TA систем II типа. В трех первых секвенированных штаммах *S .pneumonie* (D39, TIGR4 и R6) был обнаружен и подробно исследован оперон *relBE*. Всего в геномах *S. pneumonie in silico* обнаружено восемь предполагаемых TA систем: RelBE1Spn, RelBE2Spn, YefMYoeBSpn, HigAB, Phd/Doc, PezAT, TasAB и HicAB [Pandey D.P. et al., 2005; Jorgensen M.G. et al., 2009, Fico S. et al., 2003]. Было показано, что только три из них, а именно, RelBE2Spn [Nieto C. et al., 2006], YefM-YoeBSpn [Nieto C. et al., 2007] и PezAT [Khoo S.K. et al., 2007] были функционально активны, в то время RelBE1Spn была не активна [Nieto C. et al., 2006]. TA

система PezAT гомологична TA системе ω - ε - ζ , впервые идентифицированной на плазмиде pSM19035 *S. pyogenes*, однако, в отличие от нее, является двухкомпонентной [Khoo S.K. et al., 2007]. TA системы *S. pneumonie* имеют разную частоту встречаемости. Оперон *relBE2Spn* не является необходимым для существования *S. pneumonie* (хотя и важен, т.к. обеспечивает механизм персистенции, который помогает справиться с неблагоприятными условиями, что позволяет бактериям выжить и эффективно населять человеческий организм [Nieto C. et al., 2010]. Однако, он был обнаружен во всех 100 проанализированных штаммах этой бактерии [Nieto C. et al., 2006]. Оперон *pez*AT отсутствовал только в нескольких геномах [Khoo S.K. et al., 2007], а поиск оперона *yoe*B-*yef*MSpn у 31 пневмококкового штамма показал, что более чем у 40% штаммов данная система отсутствует [Nieto C. et al., 2007].

У *S. aureus*, также патогенной бактерии, идентифицировано 3 ТА системы: MazEF и две системы YefM-YoeB, прежде называвшиеся Axe-Txe [Yoshimura S. et al., 2009]. Система MazEF была обнаружена у всех 78 исследованных штаммов *S. aureus*, устойчивых к метициллину [Williams J.J.et al., 2011]. Токсин MazEFSa является эндорибонуклеазой, специфически разрезающей мPHK по сайту U \downarrow ACAU [Williams J.J., Hergenrother J.P., 2013]. В геноме непатогенного штамма *S. equorum* также были обнаружены те же 3 ТА системы, так что связь ТА систем с патогенностью стафилококка требует дальнейших исследований [Schuster F.S. et al., 2013]. Еще одна ТА система, где токсин принадлежит к суперсемейству MazF, была обнаружена на плазмиде *S. aureus* pCH91 – PemIKSa. Система обеспечивает стабильность плазмиды и, вероятно, вирулентность штамма, *in silico* она обнаружена во многих штаммах *S. aureus*, преимущественно на хромосомах. Токсин PemI имеет эндорибонуклеазную активность и специфически узнает последовательность U \downarrow AUU [Bukowski M. et al., 2013].

У *В. subtilis* также была обнаружена ТА система MazEF (YdcED) [Pellegrini et al., 2005]. Токсин MazE, эндорибонуклеаза, узнает, как и подобный токсин *S. aureus*, последовательность UACAU [Park J. et al., 2014]. Система MazEF обнаружена и у *B.anthracis* [Agarwal S. et al., 2010]. Кроме того, у *B. subtilis* обнаружено несколько TA систем нового типа, где белок принадлежит семейству Pfam PF04740 – YobLK, YxiD-YxxD, YgcGF, YokIJ. Эти токсины имеют эндорибонуклеазную активность. Их особенностью является то, что они, вероятно, способны выделяться в среду или как-то проникать в соседние клетки [Holberg et al., 2012]. ТА системы TasAB (токсин суперсемейства MazE) обнаружены на плазмидах *B. thuringiensis* [Fico S. et al., 2012; Liu M. et al., 2008].

У энтерококков TA система Axe-Txe была впервые обнаружена на плазмиде pRIM *E.faecium* [Grady R. et al., 2003], а затем – на многих плазмидах этого вида, она также была обнаружена на плазмидах *Bacillus* sp и *E.coli*. Особенно часто система обнаруживается у ванкомицин-устойчивых энтерококков [Moritz E.M. & Hergenrother P.J. 2007; Sadeghifard N. et al., 2014]. Система гомологична YefM-YoeB *E.coli*. Тхе эндорибонуклеаза разрезает мPHK за стартовым кодоном AUG [Halvorson et al., 2011].

Вид *M. tuberculosis* имеет огромное число TA систем, преимущественно II типа. У штамма H37RV идентифицировано 79 систем: VapBC (50), MazEF (10), YefM-YoeB (1), RelBE (2), HigBA (2), ParDE (2) и несколько неохарактеризованных систем. Для 37 систем была показана их активность. Активация многих TA систем *M. tuberculosis* способствует персистенции и, следовательно, патогенности микобактерий [Sala A. et al., 2014].

Среди охарактеризованных ТА систем II типа, система YoeB-YefM является одной из широко распространенных в плазмидах и в геномах бактерий. Изначально эта система была охарактеризована как Axe-Txe в штамме с множественной лекарственной устойчивостью *E. faecium* [Grady R. et al., 2003]. С тех пор система YoeB-YefM была обнаружена во многих геномах патогенных бактерий, в том числе, таких как *S. aureus*, *S.pneumoniae*, *M. tuberculosis* и *Yersinia enterocolitica* [Cherny I. et al., 2004]. Система YoeB-YefM была идентифицирована как первая функциональная TA система у *Streptomyces* [Sevillano L. et al., 20012].

Антитоксин YefM принадлежит Phd суперсемейству, а токсин YoeB принадлежит к суперсемейству ParE/RelE. Как и RelE, YoeB проявляет эндорибонуклеазную активность на мPHK, ассоциированной с рибосомой. Белок YoeB связывается с обеими субъединицами 70S рибосомы, 30S и 50S; он разрезает мPHK через один кодон после инициирующего. Комплекс YoeB-YefM образует гетеротример из двух молекул антитоксина и одной – токсина. Несмотря на сходство с белком RelE, YoeB имеет ряд отличий. Идентичность аминокислотной последовательности белков составляет 15%. В отличие от RelE, YoeB проявляет частичную активность в некоторых биохимических тестах [Kamada K. et al., 2005]. Кроме того, системы взаимодействуют с рибосомой отличным друг от друга способом. YoeB после диссоциации рибосомы связывается с субъединицей 50S [Zhang Y. et al., 2009], а RelE взаимодействует только с 16S pPHK [Neubauer C. et al., 2009]. YoeB и RelE ингибируют трансляцию, влияя либо на инициацию, либо на элонгацию соответственно.

Определена кристаллическая структура YoeB, находящегося в связи с рибосомой в состоянии перед расщеплением мРНК, что позволило охарактеризовать общие и

специфические черты рибосомо-зависимых нуклеаз [Kamada K. et al., 2005; Feng S. et al., 2013]. Экспрессия токсина YoeB из *S. pneumoniae* была летальна в клетках *Arabidopsis thaliana*. Это был первый пример действия бактериальных TA систем на растения [Abu Bakar F. et al., 2015].

ТА системы присутствуют у разных видов бактерий микробиома человека, в частности система RelBE, была обнаружена у некоторых представителей миктобиоты человека (таблица 4).

Семейство	Вид	Количество ТА систем суперсемейства RelBE [*]
Actinobacteria	Bifidobacterium	от 1 до 6
	Corinebacterium	-
	Propionibacterium	-
Bacteroidetes	Bacteroides	от 1 до 4
	Parabacteroides	1
	Prevotella	-
Firmicutes	Bacillus	от 1 до 5
	Clostridium	от 1 до 3
	Enterococcus	2
	Eubacterium	от 1 до 2
	Lactobacillus	от 1 до 4
	Listeria	1
	Streptococcus	от 1 до 4
Fusobacteria	Fusobacterium	4
Proteobacteria	Citobacter	от 1 до 5
	Escherichia	от 1 до 9
	Enterobacter	от 3-х до 7
	Helicobacter	от 1 до 2
	Klebsiella	от 1 до 3
	Pseudomonas	от 1 до 11

Таблица 4. ТА системы у бактерий микробиомы челорвека.

• данные по базе данных TADB [<u>http://bioinfo-mml.sjtu.edu.cn/TADB/</u>]

Из изложенного в литературном обзоре можно заключить, что существует большое количество видов лактобацилл и они имеют сходные фенотипические и физиологические характеристики. Установлено, что пробиотические свойства лактобацилл являются штаммоспецифическими. Видам *Lactobacillus*, обитающим в ЖКТ, уделяется большое внимание благодаря их свойствам, положительно влияющим на организм хозяина, что позволяет использовать их в составе лекарственных препаратов для профилактики болезней человека и животных. Актуальной задачей является идентификация штаммов лактобацилл в качестве биомаркеров для тестирования ранних стадий различных заболеваний человека.

ТА системы – это генетические элементы бактерий и архей, состоящие из 2-х, реже 3-х генов. В стрессовых условиях происходит изменение транскрипции и/или трансляции антитоксина, приводящее к разрушению комплекса токсин-антитоксин и активации токсина. ТА системы II типа являются наиболее изученными с биологической точки зрения и наиболее многочисленными. По своему механизму действия токсины II типа разнообразны, они подавляют различные стадии трансляции, репликацию, синтез пептидогликанов. Существуют различные механизмы действия ТА систем и различные биомишени токсинов: это подавление синтеза АТФ, трансляции, репликации, действие на цитоскелет. Токсин RelE, изучаемой в данной работе TA системы RelBE - наиболее хорошо охарактеризованный пример РНК интерферазы, расщепляющей мРНК рибосомозависимым способом. RelE расщепляет мРНК в сайте А рибосомы. Функции ТА систем в бактериальной клетке разнообразны, это участие в формировании состояния персистентности, в программированной гибели клеток, образовании биопленок, в общей регуляторной системе клетки. Неоднократно отмечалась связь между наличием ТА систем у патогенных бактерий и их вирулентностью. ТА модули рассматриваются как перспективные "мишени" для разработки антибактериальных препаратов, их потенциал предполагается использовать и для борьбы с вирусными инфекциями.
ГЛАВА 2. МАТЕРИАЛЫ И МЕТОДЫ

2.1 Штаммы и условия культивирования

Штаммы бактерий рода *Lactobacillus* были выделены из фекалий, слюны и содержимого влагалища здоровых людей – жителей центральных областей Российской Федерации. Список всех штаммов, а также источник их выделения, приведены в таблице 5. Видовая идентификация штаммов лактобацилл была проведена нами по нуклеотидной последовательности гена 16S pPHK (праймеры 27f и 1492r, табица 7) [Lane D.J. 1991].

Таблица 5. Список штаммов лактобацилл, использованных в работе.

N⁰	Вид	Название	Источник	Источник получения
п/п	лактобацилл	штамма	выделения	
1.	L. plantarum	CS 396	фекалии	ФГУН МНИИЭМ им.
				Г.Н.Габричевского г. Москва, Россия
2.	L. plantarum	8-PA-3	вагинальная	ГИСК им. Л.А. Тарасевича,
			полость	Тартуский ун-т. г. Тарту, Эстония
3.	L. plantarum	90-TC-4	Растительное	ГИСК им. Л.А. Тарасевича,
			происхождение	Тартуский ун-т. г. Тарту, Эстония
4.	L. plantarum	гКНМ 101	фекалии	ФГУН МНИИЭМ им.
				Г.Н.Габричевского г. Москва, Россия
5.	L. plantarum	K9L	фекалии	ГБОУ ВПО Тверская ГМА
				Минздрава России г. Тверь, Россия
6.	L. plantarum	46к	фекалии	ГБОУ ВПО Тверская ГМА
				Минздрава России г. Тверь, Россия
7.	L. plantarum	36ст	фекалии	ГБОУ ВПО Тверская ГМА
				Минздрава России г. Тверь, Россия
8.	L. plantarum	106зв	слюна	ГБОУ ВПО Тверская ГМА
				Минздрава России г. Тверь, Россия
9.	L. plantarum	29ст	фекалии	ГБОУ ВПО Тверская ГМА
				Минздрава России г. Тверь, Россия
10.	L. plantarum	90ст	фекалии	ГБОУ ВПО Тверская ГМА
				Минздрава России г. Тверь, Россия
11.	L. plantarum	191г	слюна	ГБОУ ВПО Тверская ГМА
				Минздрава России г. Тверь, Россия
12.	L. plantarum	29ск	кишечная	ГБОУ ВПО Тверская ГМА
			биопсия	Минздрава России г. Тверь, Россия
13.	L. plantarum	32ск	кишечная	ГБОУ ВПО Тверская ГМА
			биопсия	Минздрава России г. Тверь, Россия
14.	L. plantarum	46ск	кишечная	ГБОУ ВПО Тверская ГМА
			биопсия	Минздрава России г. Тверь, Россия
15.	L. plantarum	75ск	кишечная	ГБОУ ВПО Тверская ГМА
			биопсия	Минздрава России г. Тверь, Россия
16.	L. plantarum	90ск	кишечная	ГБОУ ВПО Тверская ГМА
			биопсия	Минздрава России г. Тверь, Россия
17.	L. rhamnosus	421-2	фекалии	ФГУН МНИИЭМ им.
				Г.Н.Габричевского г. Москва, Россия
18.	L. rhamnosus	7дст	слюна	ГБОУ ВПО Тверская ГМА

				Минздрава России г. Тверь, Россия
19.	L. rhamnosus	24дст	слюна	ГБОУ ВПО Тверская ГМА
				Минздрава России г. Тверь, Россия
20.	L. rhamnosus	32к	фекалии	ГБОУ ВПО Тверская ГМА
			1	Минздрава России г. Тверь. Россия
21.	L. rhamnosus	38к	фекалии	ГБОУ ВПО Тверская ГМА
	2	e on	T • 1100 1111	Миналрава России г. Тверь Россия
22	L rhamnosus	50зв	слюна	ГБОУ ВПО Тверская ГМА
22.	L. mannosus	2035	Chiona	Миналрава России г. Тверь Россия
23	I rhamnosus	72 _{2B}	спюна	ГБОУ ВПО Тверская ГМА
23.	L. mannosus	7230	Chiona	Миналлава России г. Тверь. Россия
24	I rhamposus	40ст	фекации	ГБОУ ВПО Тверская ГМА
27.	L. mannosus	4001	φεκαπη	Минапара России г. Тверь Россия
25	I rhamposus	80cm	heranuu	ГЕОУ ВПО Трерская ГМА
23.	L. manmosus	8001	фскалии	Т БОУ БПО ТВерская Г МА Миналара России г. Тверг. Россия
26	I rhamposus	2251		ГЕОУ РПО Тророкод ГМА
20.	L. mammosus	221 H	вагинальная	Mulating Pocoult F. Thom. Pocoult
27	I whanne o and	2577	полость	Пинздрава госсии Г. Гверь, госсия
27.	L. rnamnosus	ZI'H	вагинальная	ГБОУ ВПО ГВЕрская ГМА Минариала Вазания в Трани. Вазания
20	T 1	<i>C</i> 1	полость	Минздрава России Г. Гверь, Россия
28.	L. rhamnosus	ЭТ ГН	вагинальная	1 БОУ ВПО Тверская I МА
20	T 1	4.5	полость	Минздрава России г. Тверь, Россия
29.	L. rhamnosus	45д	фекалии	1 БОУ ВПО Іверская І МА
20			1	Минздрава России г. Тверь, Россия
30.	L. rhamnosus	50ст	фекалии	ГБОУ ВПО Тверская ГМА
		• •		Минздрава России г. Тверь, Россия
31.	L. rhamnosus	26ск	кишечная	ГБОУ ВПО Тверская ГМА
			биопсия	Минздрава России г. Тверь, Россия
32.	L. rhamnosus	61ск	кишечная	ГБОУ ВПО Тверская ГМА
			биопсия	Минздрава России г. Тверь, Россия
33.	L. fermentum	гКНМ 526	фекалии	ФГУН МНИИЭМ им.
				Г.Н.Габричевского г. Москва, Россия
34.	L. fermentum	2пр	слюна	ГБОУ ВПО Тверская ГМА
				Минздрава России г. Тверь, Россия
35.	L. fermentum	11зв	слюна	ГБОУ ВПО Тверская ГМА
				Минздрава России г. Тверь, Россия
36.	L. fermentum	11дст	слюна	ГБОУ ВПО Тверская ГМА
				Минздрава России г. Тверь, Россия
37.	L. fermentum	291Γ	слюна	ГБОУ ВПО Тверская ГМА
				Минздрава России г. Тверь, Россия
38.	L. fermentum	57ск	кишечная	ГБОУ ВПО Тверская ГМА
	, , , , , , , , , , , , , , , , , , ,		биопсия	Минздрава России г. Тверь, Россия
39.	L. fermentum	59ск	кишечная	ГБОУ ВПО Тверская ГМА
	, v		биопсия	Минздрава России г. Тверь, Россия
40.	L. fermentum	60ск	кишечная	ГБОУ ВПО Тверская ГМА
	J		биопсия	Минздрава России г. Тверь. Россия
41.	L. fermentum	102ск	кишечная	ГБОУ ВПО Тверская ГМА
			биопсия	Минздрава России г. Тверь Россия
42	L. fermentum	103ск	кишечная	ГБОУ ВПО Тверская ГМА
		10500	биопсия	Минздрава России г Тверь Россия
43	L casei/naracasei	гКНМ 23	фекации	ФГУН МНИИЭМ им
1.5.		111111123	Terrainin	ГНГабричевского г Москва Россия

44.	L. casei/paracasei	гКНМ 577	фекалии	ФГУН МНИИЭМ им.
	-		-	Г.Н.Габричевского г. Москва, Россия
45.	L. casei/paracasei	K ₃ III ₂₄	фекалии	ВНИИ Молочной промышленности
	-		-	г. Москва, Россия
46.	L. casei/paracasei	20011	фекалии	DSM типовой
47.	L. casei/paracasei	17к	фекалии	ГБОУ ВПО Тверская ГМА
			Ĩ	Минздрава России г. Тверь, Россия
48.	L. casei/paracasei	42ст	фекалии	ГБОУ ВПО Тверская ГМА
	-		-	Минздрава России г. Тверь, Россия
49.	L. casei/paracasei	48ст	фекалии	ГБОУ ВПО Тверская ГМА
	*		1	Минздрава России г. Тверь, Россия
50.	L. casei/paracasei	51ст	фекалии	ГБОУ ВПО Тверская ГМА
	*		1	Минздрава России г. Тверь, Россия
51.	L. helveticus	Er 315/ 402	фекалии	Армения
52.	L. helveticus	100 аш	фекалии	ВНИИ Молочной промышленности
			Ĩ	г. Москва, Россия
53.	L. helveticus	NK-1	фекалии	ВНИИ Молочной промышленности
			1	г. Москва, Россия
54.	L. helveticus	NNIE	фекалии	ВНИИ Молочной промышленности
			Ĩ	г. Москва, Россия
55.	L. brevius	15f	фекалии	ГБОУ ВПО Тверская ГМА
			-	Минздрава России г. Тверь, Россия
56.	L. brevis	47ст	фекалии	ГБОУ ВПО Тверская ГМА
			1	Минздрава России г. Тверь, Россия
57.	L. brevis	52ст	фекалии	ГБОУ ВПО Тверская ГМА
			-	Минздрава России г. Тверь, Россия
58.	L. mucosa	46ст	фекалии	ГБОУ ВПО Тверская ГМА
			-	Минздрава России г. Тверь, Россия
59.	L. salivarius	44ст	фекалии	ГБОУ ВПО Тверская ГМА
			-	Минздрава России г. Тверь, Россия
60.	L. salivarius	64ск	кишечная	ГБОУ ВПО Тверская ГМА
			биопсия	Минздрава России г. Тверь, Россия
61.	L. salivarius	78ск	кишечная	ГБОУ ВПО Тверская ГМА
			биопсия	Минздрава России г. Тверь, Россия
62.	L. johnsonii	К21	фекалии	ГНЦ РФ ИМБП РАН
			-	г. Москва, Россия

Штаммы Esherichia coli, используемые в данной работе:

> для клонирования и выделения плазмид:

TG1: F [traD36 proAB+ lacIq lacZ Δ M15]supE thi-1 Δ (lac-proAB) Δ (mcrB-hsdSM)5, (rK-mK-);

DH5a: F gyrA96(NalR) recA1 relA1 endA1 thi-1 hsdR17(rk-mk+) glnV44 deoR delta(lacZYA-argF)U169 [phi80delta(lacZ)M15];

> для экспрессии генов:

BL21 (DE3): F ompT gal [E. coli B is naturally dcm and lon] hsdSB with DE3, a λ prophage carrying the T7 RNA polymerase gene and lacIQ.

Штамм *Bacillus subtilis* DB104 использовался для получения в хромосоме конструкций с геном-репортером β-галактозидазы и клонированными промоторами.

Плазмиды и векторы

В экспериментах по клонированию фрагментов ДНК и экспрессии генов pACYCDuet-1. использовали векторы pET-32a, Для клонирования промоторов плазмиду pMG16 (рисунок Характеристика векторов использовали 7). И сконструированных в данной работе плазмид приведена в таблице 6.

Рисунок 7 – Схемы экспрессионных векторов. А – pET-32a; Б – pACYCDuet-1; В – pMG16 Таблица 6. Плазмиды, использованные в работе.

Плазмида	Характеристика	
		к
pET32a	Экспрессионный вектор <i>E.coli</i> . Содержит IPTG-	Novagen
	индуцируемый промотор T7 фага/lac оператор, rbs, His-Tag,	_
	S-Tag и Trx-Tag, pBR322 origin; Ap ^R	
pACYCDuet-1	Экспрессионный вектор <i>E.coli</i> . Содержит IPTG-	Novagen
	индуцируемый промотор T7 фага/ <i>lac</i> оператор, rbs, His-Tag,	
	P15A origin; Cm ^K	
p32 <i>relE1</i> _2	Ген токсина <i>relE1</i> штамма <i>L.r.</i> 2гн амплифицирован с	Данная
	помощью праймеров FGG00493 <i>EcoR</i> /RGG00493 <i>Hind</i> ,	работа
$p^{2} \gamma_{\nu \alpha \beta} P \gamma 4$	рестрицирован <i>Есо</i> кі/ <i>Ніпа</i> ті и клонирован в рЕТ-32а	Понноя
р52уоев_24	Ген токсина <i>уоев</i> штамма $L.r.24$ дс амплифицирован с номощию праймеров Ele 02727 <i>Eco</i> P/Plc 02727 <i>Hind</i>	данная
	помощью праимеров $\Gamma(c_02/2/EcoR/Ric_02/2/11)$	paulora
p32vefM_24	Ген антитоксина <i>vefM</i> штамма <i>L r</i> 24 лс амплифицирован с	Паннад
p52yenvi_24	помощью праймеров Flc $02726EcoR/Rlc$ $02726Hind$	работа
	рестрицирован <i>Eco</i> RI/ <i>Hind</i> III и клонирован в pET-32a	puooru
p32voeB 40	Ген токсина <i>voeB</i> штамма <i>L.r.</i> 40ст амплифицирован с	Ланная
pe_jee	помошью праймеров Flc 02727 <i>Eco</i> R/Rlc 02727 <i>Hind</i> .	работа
	рестрицирован <i>Eco</i> RI/ <i>Hind</i> III и клонирован в pET-32a	1
p32 <i>relB3</i> _45	Ген антитоксина relB3 штамма L.r.45д амплифицирован с	Данная
	помощью праймеров FH_00056EcoR/RH_00056Hind,	работа
	рестрицирован <i>Eco</i> RI/ <i>Hind</i> III и клонирован в pET-32a	
pACyoeB_24	Ген токсина <i>уоеВ</i> штамма <i>L.r.</i> 24дст амплифицирован с	Данная
	помощью праймеров Flc_02727 <i>Eco</i> R/Rlc_02727 <i>Hind</i> ,	работа
	рестрицирован <i>Eco</i> RI/ <i>Hind</i> III и клонирован в pACYCDuet-1	
pAC <i>relEI_{Lhv}</i> NK	Ген токсина <i>relE1</i> штамма <i>L.h</i> .NK1 амплифицирован с	Данная
	помощью праимеров Fnv2502EcoR/Rnv2502Hind,	раоота
pACrolEl. NN	рестрицирован $ECONI/HIMAIII и клонирован в рас I с Duet-1$	Панная
pACTELLI _{Lhv} _ININ	L поксина <i>reiE1</i> штамма <i>L.n.</i> R L R L R L	данная работа
	рестрицирован <i>Eco</i> RI/ <i>Hind</i> III и клонирован в pACYCDuet-1	puooru
pACrelE2 _{1by} NK	Ген токсина <i>relE2</i> штамма <i>L.h</i> .NK амплифицирован с	Ланная
1 200	помощью праймеров Fhv2503BamH/Rhv2503XhoI,	работа
	рестрицирован BamH/XhoI и клонирован в pACYCDuet-1	1
pAC <i>relE2_{Lhv}</i> _NN	Ген токсина relE2 штамма L.h.NNIE амплифицирован с	Данная
	помощью праймеров Fhv2503BamH/Rhv2503XhoI,	работа
	рестрицирован BamH/XhoI и клонирован в pACYCDuet-1	
pAC <i>relE3_{Lhv}_</i> NN	Ген токсина <i>relE3</i> штамма <i>L.h</i> .NNIE амплифицирован с	Данная
	помощью праймеров FH2056EcoR/RH2056Hind,	работа
	рестрицирован <i>Eco</i> RI/ <i>Hind</i> III и клонирован в pACYCDuet-1	п
pAC <i>relES_{Lhv}</i> _NN	Ген токсина <i>relE3</i> штамма <i>L.h.</i> NNIE амплифицирован с	Данная
	Помощью праимеров $Fnv1050LCoR/Rnv1050Hma$,	paoora
n32rolF1.	рестрицирован <i>Есоки пиш</i> ти и клонирован в рас i CDuel-1 Ген токсина <i>relE1</i> штамма <i>L</i> с амплифицирован с помощио	Панная
PS2reiE1 _{Lcs}	праймеров $Flcs14530EcoR/Rlcs14520Hind$ рестрицирован с помощью	даппая работа
	<i>Eco</i> RI/ <i>Hind</i> III и клонирован в в рЕТ-32а	puooru
pMG16	$AP^{R} Sp^{R} (E.coli), Sp^{R} (B.subtilis)$	
·	Плазмида для клонирования промоторов. Репортерный ген	

β-галактозидазы расположен между фрагментами гена	
амилазы (amyE) B.subtilis. Реплицируется в E.coli (pUC19	
репликон)	

Среды

Для культивирования лактобацилл использовали среду Lactobacterium MRS (производства HiMedia). Для выращивания *E.coli* и *B.subtilis* использовали среду Лурия – Бертани (LB). Для обеспечения селективного роста плазмидсодержащих клеток добавляли ампицилин (100мкг/мл), хлорамфеникол (5мг/мл) (для *E.coli*) и спектиномицин (100мг/мл) (для *B.subtilis*). Для отбора клонов после трансформации *B.subtilis* DB104 к LB – агару добавляли крахмал в концентрации 0,5%. В качестве индуктора промотора в плазмидах pET-32a, pACYCDuet-1 использовали IPTG в концентрации 0,5мМ.

В качестве минимальных сред для *B.subtilis* использовали среды Спицайзена. Основная среда Спицайзена имела следующий состав: (NH₄)₄SO₄ - 2 г; KH₂PO₄ - 6 г; K₂HPO₄ -14 г; цитрат натрия - 1 г; MgSO₄ - 0,1 г; глюкоза - 5 г; дистиллированная вода -до 1 л; pH=7,4. Среда Спицайзена I, кроме того, содержала 0,2% дрожжевого гидролизата; 0,01% гидролизата казеина и необходимые аминокислоты и азотистые основания в концентрации 50 мкг/мл и 30 мкг/мл соответственно. Среда Спицайзена II состояла из основной среды Спицайзена с добавлением 0,01% дрожжевого гидролизата.

Условия выращивания

Культуры всех штаммов лактобацилл выращивали в жидкой и на агаризованной среде MRS в термостате при $37\pm0,5^{\circ}$ C в течение 24-48 часов. При выращивании бактерий на плотных питательных средах применяли анаэростаты и газпакеты (BD GasPakTM EZ Anaerobe Container System), обеспечивающие атмосферу, содержащую 10% CO₂. Клетки *E.coli* и *B.subtilis* выращивались на твердой питательной LB среде при 37° C в течение 24 ч и в жидкой среде при 37° C с аэрацией (250об/мин) 24 ч.

2.2 Выделение ДНК

2.2.1 Выделение хромосомной ДНК лактобацилл

Клетки из 14 мл культуры осаждали центрифугированием при 12000 об/мин в течении 12 мин и ресуспендировали в 7 мл буфера 50 мМ Трис-HCl, 10 мМ ЭДТА-Na₂, pH 8,0. Суспензию клеток центрифугировали в тех же условиях и осадок ресуспендировали в 500 мкл указанного выше буфера; суспензию переносили в 2-мл центрифужную пробирку и добавляли 50 мкл хлороформа. Смесь энергично встряхивали с помощью вортекса (5 раз

по 10 сек), вносили 100 мкл лизоцима (120 мг/мл) и инкубировали 30 минут при 37°С; затем добавляли 6 мкл РНКазы А (10 мг/мл) и инкубировали еще 30 минут при 37°С. Для лизиса клеток суспензию мягко смешивали с 200 мкл 10% SDS и 200 мкл 5 M NaCl; смесь инкубировали 16 ч при 65°С.

Полученный грубый лизат клеток остужали до комнатной температуры, добавляли 1 мл смеси фенол/хлороформ (1:1) и тщательно смешивали в течение 5 мин до состояния гомогенной эмульсии; смесь центрифугировали при 12000g 15 мин. Водную фазу, содержащую ДНК, отбирали в новую 1,5-мл пробирку и смешивали с 600 мкл изопропанола. Смесь инкубировали 30 минут при комнатной температуре и центрифугировали при 12000g 20 минут. Осадок ДНК трижды промывали порциями по 0,5 мл 75% этанола (центрифугирование по 5 мин при 12000g) и растворяли в 100 мкл деионизованной воды. ДНК хранили при –20°С.

2.2.2 Выделение плазмидной ДНК *E.coli* с использованием набора GeneJETTM Plasmid Miniprep Kit (Thermo Scientific, США)

Бактерии выращивали в LB среде с антибиотиком (37⁰C, 18 часов, 250 об/мин, 10 мл). Биомассу отбирали центрифугированием в течение 2 мин при 12 000 об/мин. Клетки суспендировали в 250 мкл Resuspension solution + RNase A. Затем добавляли 250 мкл Lysis solution и тщательно перемешивали в течение 4-6 мин. Добавляли 350 мкл Neutralization solution и повторно перемешивали 4-6 мин. Затем центрифугировали 10 мин при 13 000 об/мин. Супернатант переносили на колонку и центрифугировали в течение 1 мин при 12 000 об/мин. Колонки промывали 0,5 мл Wash solution с последующим центрифугированием в течение 1 мин (2 раза). Остаток Wash solution в колонке удаляли повторным центрифугированием в течение 1 мин. Затем колонки переносили в эппендорфы на 1,5 мл и элюировали ДНК добавлением 50 мкл H₂O с центрифугированием в течение 2 мин при 12 000 об/мин.

2.3 Конструирование праймеров и проведение ПЦР

Примеры были сконструированы с помощью программы NCBI/Primer-BLAST (<u>www.ncbi.nlm.nih.gov/tools/primer-blast/</u>). Праймеры для обнаружения TA систем конструировались по консервативным участкам TA систем аннотированных штаммов *L.rhamnosus, L.helveticus и L.casei* (<u>http://blast.ncbi.nlm.nih.gov/genome</u>). У TA системы RelBE3_{1rh} проксимальные районы были резко отличны у разных штаммов, поэтому были использованы 3 различных F-праймера (для одного R-праймера). Праймеры для определения нуклеотидной последовательности TA систем были сконструированы по соседним с TA систем генам (TA системы YefM-YoeB_{Lrh}, RelBE1_{Lhv}, RelBE3_{Lhv}, RelBE1_{Lcs})

или по флангам генов (ТА системы RelB3-RelE3_{Lth}, relE1_{Lth} relE2_{Lhv} RelBE5_{Lhv}) – в зависимости от консервативности нуклеотидных последовательностей, окружающих тот или иной ТА локус. Праймеры для клонирования генов были созданы по фланговым районам генов. При необходимости к 5'-концам праймеров добавляли сайты узнавания эндонуклеаз рестрикции. Праймеры были синтезированы фирмой Синтол (Россия) и представлены в таблице 7.

ПЦР проводили со смесью высокоточных ДНК-полимераз из набора Tersus PCR kit (Eurogen, Russia) на приборе «Терцик» («ДНК Технология», Россия). Температурный режим подбирали с учетом длины и состава праймеров. При скрининге гибридных колоний использовали Таq-полимиразу и набор «PCR core kit» фирмы «Диалат ЛТД», Россия.

Состав смеси для ПЦР: 10×ПЦР буфер; 2,5mM ΣdNTPs; DMSO; 50mM MgCl₂, плазмидная ДНК; олигонуклеотидные праймеры добавляли в количестве 20 пмоль на 100 мкл смеси; 5u/µl Taq –полимераза.

Таблица 7. Олигонуклеотиды, использованные в работе.

№ п/п	Название	Последовательность 5' - 3'	Для чего использовался
		Для гена 16S pl	РНК
1.	27f	AGA GTT TGA TCC TGG CTC AG	Forward олигонуклеотид для определения НК последовательности гена 16S PHK, [Lane D.J. 1991]
2.	1492r	GGT TAC CTT GTT ACG ACT T	Reverse олигонуклеотид для определения НК последовательности гена 16S РНК, [Lane D.J. 1991]
		Для ТА систем в штамма	x L. rhamnosus
3.	FGG00493EcoR	TTTT <u>GAATTC</u> ATGCCCACCTCCCTGCCCCT	Forward олигонуклеотид для определения НК последовательности гена токсина LGG_00493 и для клонирования этого гена в плазмиду pET32a.
4.	RGG00493Hind	TTTT <u>AAGCTT</u> TTAAATCTCGCCATGGCGGCC	Reverse олигонуклеотид для определения НК последовательности гена токсина LGG_00493 и для клонирования этого гена в плазмиду pET32a.
5.	Flc_02726EcoR	TTTT <u>GAATTC</u> ATGGAAGCAACGAATTATAGTGAT	Forward олигонуклеотид для определения НК последовательности ТА системы Lc705_002726-02727 и для клонирования гена антитоксина Lc705_02726 в pET32a.
6.	Rlc_02726Hind	TTTT <u>AAGCTT</u> TTAATCATGATCGAAGTCCGTTAA	Reverse олигонуклеотид для клонирования гена антитоксина Lc705_02726 в плазмиду pET32a.
7.	Flc_02727EcoR	TTTT <u>GAATTC</u> ATGATTAAAACCTGGACCGATGA	Forward олигонуклеотид для клонирования гена токсина Lc705_02727 в плазмиды рЕТ32а и рАСҮСDuet-1.
8.	Rlc_02727Hind	TTTT <u>AAGCTT</u> TTAACTGTAGTGAGTGCGGCA	Reverse олигонуклеотид для определения НК последовательности ТА системы Lc705_002726-02727 и для клонирования гена токсина Lc705_02727 в pET32a и pACYCDuet-1.
9.	RelBE_R11F	TTT <u>GGATCC</u> ATGATCTCGATGGAAACAAAAT	Forward олигонуклеотид для определения НК последовательности ТА системы HMPREF0541_00056–00057 и для клонирования гена токсина

			НМРREF0541_00056 в плазмиды рЕТ32а и рАСҮСDuet-1.
10.	RelBE_GG	TTT <u>GGATCC</u> ATGGCAAAAGAATCCCGTATC	Forward олигонуклеотид для определения НК
			последовательности гена антитоксина LGG_00519.
11.	RelBE_Lc	TTT <u>GGATCC</u> TTGATGAACATGACCAAAAAATC	Forward олигонуклеотид для определения НК
			последовательности ТА системы Lc705_00508-00509.
12.	RelBE_R EcoR	TTT <u>GAATTC</u> TTACTCAATGTTCAATGTATCG	Reverse олигонуклеотид для определения НК
			последовательности ТА систем HMPREF0541_00056-00057,
			Lc705_00508-00509 и LGG_00519.
13.	FH_00056EcoR	TTTT <u>GAATTC</u> ATGATGTTGACGATTAATCGCA	Forward олигонуклеотид для клонирования гена токсина
14	DU 0005(Uind		НИРКЕРОЗ41_00050 в плазмиду рас у Сриет-1.
14.	KII_00050IIIIu	THE	НМРКЕБО541 00056 в плазмилу рАСУСДиеt-1.
15.	FH 00057EcoR	TTTT GAATTC ATGATCTCGATGGAAACAAAAT	Forward олигонуклеотид для клонирования гена антитоксина
			HMPREF0541_00057 в плазмиду pET32a.
16.	RH_00057Hind	TTTTAAGCTTTTAATCGTCAACATCATTGTATAA	Reverse олигонуклеотид для клонирования гена антитоксина
			HMPREF0541_00057 в плазмиду pET32a.
		Для ТА систем в штамма	ax L. helveticus
17.	Fhv1127EcoR	TTTT <u>GAATTC</u> ATGACAGTAGCATTAACTCAAAG	Forward олигонуклеотид для определения НК
10	DL-112711-1		последовательности I A системы Lhv_112/-2502.
18.	Knv112/Hind	IIII <u>AAGUII</u> IIAIIIAAAIIICICCCAAIAAICAI	Кеvенее олигонуклеотид для клонирования тена антитоксина I by 1127 в плазмилу рЕТ-32а
19	Fhv2502EcoR	TTTT GAATTC ATGTCAAAATTAGTATTTAGACCAC	Forward опигонуклеотил для клонирования гена токсина
17.			Lhv_2502 в плазмиду рАСҮСDuet-1.
20.	Rhv2502Hind	TTTTAAGCTTCTATTTACGAAACTTTCTAGACTT	Reverse олигонуклеотид для определения НК
			последовательности ТА системы Lhv_1127-2502 и для
			клонирования гена токсина Lhv_2502 в рАСҮСDuet-1.
21.	FH1992BamH	TTTTT <u>GAATTC</u> ATGCTACAAACACCAAATAATATTA	Forward олигонуклеотид для определения НК
22	DII1002Vhal	Α	последовательности I A системы LBHH_1992-2056.
22.	КП1992АПОІ		LBHH 1992 в плазмилу рЕТ-32а
23.	FH2056EcoR	TTTT GAATTC ATGACGAAGCTTAACGTAAATTTTA	Forward олигонуклеотид для клонирования гена токсина
			LBHH_2056 в плазмиду рАСҮСDuet-1.
24.	RH2056Hind	TTTT <u>GGATCC</u> ATGCTACAAACACCAAATAATATTA	Reverse олигонуклеотид для определения НК
		A	последовательности ТА системы LBHH 1992-2056 и для

			клонирования гена токсина LBHH_2056 в pACYCDuet-1.
25.	Fhv2503BamH	TTTT <u>GGATCC</u> ATGTTTAACGTTAAGGAAAGAC	Forward олигонуклеотид для определения НК
			последовательности гена токсина lhv2503 и для клонирования
•			данного гена в плазмиду рАСҮСDuet-1.
26.	Rhv2503Xhol	TTIT <u>CTCGAG</u> TTAAATITIGITATGAATCAAGCT	Reverse олигонуклеотид для определения НК
			последовательности гена токсина lhv2503 и для клонирования
25			данного гена в плазмиду рАС у CDuet-1.
27.	F05680 EcoR	TTT T GA ATT C AT GAA GAA GAA TGA TAA AAA G	Forward олигонуклеотид для клонирования гена токсина
• •	—		<i>R0052_05680</i> в плазмиду рЕТ-32а.
28.	R05680 BamH	TTT T GG ATC C TT AAT TCT TAT GAT AAT TAA CC	Reverse олигонуклеотид для клонирования гена токсина
			<i>R0052_05680</i> в плазмиду pET-32a.
29.	F05855 EcoR	TTT T GA ATT C TT GAG CCA ATT AAT ACT GCA	Forward олигонуклеотид для клонирования гена токсина
	100000_LCON		<i>R0052_05855</i> в плазмиду pET-32а.
30.	R05855 BamH	ΤΤΤ Τ GG ΔΤC C ΤΤ ΔΔΔ GCC GCT ΤΤΤ ΤΤG ΤΔC	Reverse олигонуклеотид для клонирования гена токсина
	K05055_Danni	III I <u>odate e</u> ll'AAA dee del III IId IAc	<i>R0052_05855</i> в плазмиду pET-32а.
31.	F06470 F00D	ΤΤΤ ΤΟΛ ΑΤΤ ΟΛΤ ΟΟΛ ΑΘΑ ΤΤΑ ΤΑΑ ΑΤΤ ΑΘΑ	Forward олигонуклеотид для клонирования гена токсина
	F004/0_ECOK	THE INA ALL CALOR AND THE TAR ALL AND	<i>R0052_06470</i> в плазмиду pET-32а.
32.	D06470 DomU		Reverse олигонуклеотид для клонирования гена токсина
	K004/0_Dalliff	III I <u>GGAIC C</u> II AAA AIO CAI CAI IAA II	<i>R0052_06470</i> в плазмиду pET-32a.
33.	E06500 E D		Forward олигонуклеотид для клонирования гена токсина
	F00590_ECOK	III I <u>GA AIT C</u> AI GAA AAT TAO TAA ITA TAI TA	<i>R0052_06590</i> в плазмиду pET-32a.
34.	DA(500 D		Reverse олигонуклеотид для клонирования гена токсина
	K00590_BamH	III I <u>GGAIC C</u> II AAI CII CCI IIC IAA GCA	<i>R0052_06590</i> в плазмиду pET-32a.
35.	T05245 X1		Forward олигонуклеотид для клонирования гена токсина
	F0/345_Xho	TITTI <u>CT CGA G</u> AT GCA CGI TAC AAC GIA T	<i>R0052_07345</i> в плазмиду pET-32a.
36.			Reverse олигонуклеотид для клонирования гена токсина
	R07345_Hind	TITTT <u>AA GCT T</u> IT ATA TIG CIT TAA TAA ACI T	<i>R0052 07345</i> в плазмиду рЕТ-32а.
37.			Forward олигонуклеотил для клонирования гена токсина
	F08040_EcoR	TTT T <u>GA ATT C</u> AT GGA AAA GTT ACT GAA ATT A	<i>R0052 08040</i> в плазмиду рЕТ-32а.
38.			Reverse олигонуклеотил для клонирования гена токсина
	R08040_BamH	TTT T <u>GG ATC C</u> TC ATT TTG CCA TTC GTC C	<i>R0052 08040</i> в плазмилу рЕТ-32а.
20			

		AG	<i>R0052_09820</i> в плазмиду pET-32a.
40.	R09820_BamH	TTT T <u>GG ATC C</u> TT ACC TCA ATA CTA ATC TTT C	Reverse олигонуклеотид для клонирования гена токсина <i>R0052_09820</i> в плазмиду pET-32a.
41.	F10550_EcoR	TTT T <u>GA ATT C</u> AT GAT GAT GTA CTT ACT GT	Forward олигонуклеотид для клонирования гена токсина <i>R0052_10550</i> в плазмиду pET-32a.
42.	R10550_BamH	TTT T <u>GG ATC C</u> TT AAT TGA AAA TAT CTG ACA T	Reverse олигонуклеотид для клонирования гена токсина <i>R0052_10550</i> в плазмиду pET-32a.
43.	F10565_EcoR	TTT T <u>GA ATT C</u> AT GAT TGA AGT AAC CGT TGA TT	Forward олигонуклеотид для клонирования гена токсина <i>R0052_10565</i> в плазмиду рЕТ-32а.
44.	R10565_BamH	TTT T <u>GG ATC C</u> TT ATT TTT CAT CTT TTT TGC CTT C	Reverse олигонуклеотид для клонирования гена токсина <i>R0052_10565</i> в плазмиду pET-32a.
45.	F11135_EcoR	TTT T <u>GA ATT C</u> AT GCT TCA AGT TCT GCT GC	Forward олигонуклеотид для клонирования гена токсина <i>R0052_11135</i> в плазмиду рЕТ-32а.
46.	R11135_BamH	TTT T <u>GG ATC C</u> TT AAT TGG TAC TTA CCG AAG T	Reverse олигонуклеотид для клонирования гена токсина <i>R0052_11135</i> в плазмиду pET-32a.
47.	F11615_EcoR	TTT T <u>GA ATT C</u> AT <u>GAT TGA TTG GGT AAT GAT TG</u>	Forward олигонуклеотид для клонирования гена токсина <i>R0052_11615</i> в плазмиду pET-32a.
48.	R11615_BamH	TTT T <u>GG ATC C</u> TC ACT TAA AAA AGT TCA GAA ATC	Reverse олигонуклеотид для клонирования гена токсина <i>R0052_11615</i> в плазмиду pET-32a.
49.	F00225_EcoR	TTT T <u>GA ATT C</u> AT GAG AAG ACA AGA AAG	Forward олигонуклеотид для клонирования гена токсина <i>R0052_00225</i> в плазмиду рЕТ-32а.
50.	R00225_BamH	TTT T <u>GG ATC C</u> CT AAA CTT GAA GTG AC	Reverse олигонуклеотид для клонирования гена токсина <i>R0052_00225</i> в плазмиду рЕТ-32а.
51.	F02305_EcoR	TTT T <u>GA ATT C</u> TT GCT TTC GCT TGA TAA ATT C	Forward олигонуклеотид для клонирования гена токсина <i>R0052_02305</i> в плазмиду рЕТ-32а.
52.	R02305_BamH	TTT T <u>GG ATC C</u> CT ACC TAA AGG CTG TAG CA	Reverse олигонуклеотид для клонирования гена токсина <i>R0052_02305</i> в плазмиду pET-32a.
53.	F02870_EcoR	TTT T <u>GA ATT C</u> AT GGA TCT GTG GGC AAA GA	Forward олигонуклеотид для клонирования гена токсина <i>R0052_02870</i> в плазмиду pET-32a.
54.	R02870_BamH	TTT T <u>GG ATC C</u> TC ACT CCG TAC TTC TAA TGT	Reverse олигонуклеотид для клонирования гена токсина <i>R0052_02870</i> в плазмиду pET-32a.

55.	F03020_EcoR	TTT T <u>GA ATT C</u> AT GTA TCA AAT TAA ATA TAG TG	Forward олигонуклеотид для клонирования гена токсина <i>R0052_03020</i> в плазмиду pET-32a.
56.	R03020_BamH	TTT T <u>GG ATC C</u> TT ATT TTA CGG TCT CTA CAT	Reverse олигонуклеотид для клонирования гена токсина <i>R0052_03020</i> в плазмиду pET-32a.
57.	F03080_EcoR	TTT T <u>GA ATT C</u> AT GAA TAA AAA CGA TCA AAA TGA	Forward олигонуклеотид для клонирования гена токсина <i>R0052_03080</i> в плазмиду pET-32a.
58.	R03080_BamH	TTT T <u>GG ATC C</u> TC AAC ATA AAC AAA ACC ATA GC	Reverse олигонуклеотид для клонирования гена токсина <i>R0052_03080</i> в плазмиду pET-32a.
59.	F03145_EcoR	TTT T <u>GA ATT C</u> AT GCT TCA TCG CGA AAA TAA	Forward олигонуклеотид для клонирования гена токсина <i>R0052_03145</i> в плазмиду pET-32a.
60.	R03145_BamH	TTT T <u>GG ATC C</u> CT ATG CAC TTA CCC AAT CA	Reverse олигонуклеотид для клонирования гена токсина <i>R0052_03145</i> в плазмиду pET-32a.
61.	F03820_EcoR	TTT T <u>GA ATT C</u> TT GAA TAA CCA AGA CTT TGA TT	Forward олигонуклеотид для клонирования гена токсина <i>R0052_03820</i> в плазмиду pET-32a.
62.	R03820_BamH	TTT T <u>GG ATC C</u> CT ACA TTG AAG TAA AAC TGT C	Reverse олигонуклеотид для клонирования гена токсина <i>R0052_03820</i> в плазмиду pET-32a.
63.	F04210_EcoR	TTT T <u>GA ATT C</u> AT GCC TAA TTT GTT TTC AGT T	Forward олигонуклеотид для клонирования гена токсина <i>R0052_04210</i> в плазмиду pET-32a.
64.	R04210_BamH	TTT T <u>GG ATC C</u> TT AAC TTC CAT TAG TAG CCA	Reverse олигонуклеотид для клонирования гена токсина <i>R0052_04210</i> в плазмиду pET-32a.
65.	F05470_EcoR	TTT T <u>GA ATT C</u> AT GAC TAA TAA AGC TGC A	Forward олигонуклеотид для клонирования гена токсина <i>R0052_05470</i> в плазмиду pET-32a.
66.	R05470_BamH	TTT T <u>GG ATC C</u> CT AAT TTT TTA TCT TCA TAT T	Reverse олигонуклеотид для клонирования гена токсина <i>R0052_05470</i> в плазмиду pET-32a.
67.	F0454_EcoR	TTT T <u>GA ATT C</u> AT GAC AAT CTC TTA TGG TGC TTT	Forward олигонуклеотид для клонирования гена токсина <i>Lhv_0454</i> в плазмиду pET-32a.
68.	R0454_BamH	TTT T <u>GG ATC C</u> TT AAT TTT CAC CTC TAC GGC GT	Reverse олигонуклеотид для клонирования гена токсина <i>Lhv_0454</i> в плазмиду pET-32a.
69.	F0783_EcoR	TTT T <u>GA ATT C</u> AT GTT AAC AGA AGT CAT CTT TTC T	Forward олигонуклеотид для клонирования гена токсина <i>Lhv_0783</i> в плазмиду pET-32a.
70.	R0783_BamH	TTT T <u>GG ATC C</u> CT AAG CAG CGC GCT TCC CT	Reverse олигонуклеотид для клонирования гена токсина

			<i>Lhv_0783</i> в плазмиду pET-32a.
71.	F0860_ Hind	TTT T <u>AA GCT T</u> AT GGC TTT TGA TAA ATT AGG TAG A	Forward олигонуклеотид для клонирования гена токсина <i>Lhv_0860</i> в плазмиду pET-32a.
72.	R0860_BamH	TTT T <u>GG ATC C</u> TT AAC TTA AAT TAT CTT TCT TAT CTA C	Reverse олигонуклеотид для клонирования гена токсина <i>Lhv_0860</i> в плазмиду pET-32a.
73.	F2095_ Hind	TTT T <u>AA GCT T</u> AT GAC TAT AGC TCA AAT TAT CAC G	Forward олигонуклеотид для клонирования гена токсина <i>Lhv_2095</i> в плазмиду pET-32a.
74.	R2095_BamH	TTT T <u>GG ATC C</u> TT ATT TAA CAA CAA CCT TTC CAT GA	Reverse олигонуклеотид для клонирования гена токсина <i>Lhv_2095</i> в плазмиду pET-32a.
75.	F1977_ Hind	TTT T <u>AA GCT T</u> AT GAT TGA TTG GGT AAT GAT TGG	Forward олигонуклеотид для клонирования гена токсина <i>LBHH_1977</i> в плазмиду pET-32a.
76.	R1977_ BamH	TTT T <u>GG ATC C</u> TC ACT TAA AAA AGT TCA GAA ATC C	Reverse олигонуклеотид для клонирования гена токсина <i>LBHH_1977</i> в плазмиду pET-32a.
77.	F0843_EcoR	TTT T <u>GA ATT C</u> AT GAA AAA ATT GAG AAT AGC ATA C T	Forward олигонуклеотид для клонирования гена токсина <i>LBHH_0843</i> в плазмиду pET-32a.
78.	R0843_BamH	TTT T <u>GG ATC C</u> TT AAT ATA CTT TTT TAG CTA ACA AAA T	Reverse олигонуклеотид для клонирования гена токсина <i>LBHH_0843</i> в плазмиду pET-32a.
79.	F2403_Hind	TTT T <u>AA GCT T</u> TT GCG GAA GAT TTT GAT TTT TAT C	Forward олигонуклеотид для клонирования гена токсина <i>Lhv_2403</i> в плазмиду pET-32a.
80.	R2403_BamH	TTT T <u>GG ATC C</u> CT ACT TGC TAT CCG AGT GAA AC	Reverse олигонуклеотид для клонирования гена токсина <i>Lhv_2403</i> в плазмиду pET-32a.
81.	F06470_EcoR	TTT T <u>GA ATT C</u> AT GCA AGA TTA TAA ATT AGA	Forward олигонуклеотид для клонирования гена токсина <i>R0052_06470</i> в плазмиду pACYCDuet-1.
82.	R06470_Hind	TTT T <u>AA GCT T</u> TT AAA ATG CAT CAT TAA TT	Reverse олигонуклеотид для клонирования гена токсина <i>R0052_06470</i> в плазмиду pACYCDuet-1.
83.	F06465_EcoR	TTT T <u>GA ATT C</u> AT GGC AGA AGA TTG GAT T	Forward олигонуклеотид для клонирования гена антитоксина <i>R0052_06465</i> в плазмиду pET-32a.
84.	R06465_BamH	TTT T <u>GG ATC C</u> TT ACT TTA ATA GCA ATA ATT C	Reverse олигонуклеотид для клонирования гена антитоксина <i>R0052_06465</i> в плазмиду pET-32a.
85.	F10560_EcoR	TTT T <u>GA ATT C</u> AT GAA AAA TAA AAA TGA ATT T	Forward олигонуклеотид для клонирования гена токсина <i>R0052_10560</i> в плазмиду pACYCDuet-1.

86.	R10560_BamH	TTT T <u>GG ATC C</u> TT ACT TGT CAT GCC TC	Reverse олигонуклеотид для клонирования гена токсина <i>R0052_10560</i> в плазмиду pACYCDuet-1.
87.	F10565_EcoR	TTT T <u>GA ATT C</u> AT GAT TGA AGT AAC CGT TGA TT	Forward олигонуклеотид для клонирования гена антитоксина <i>R0052_10565</i> в плазмиду pET-32a.
88.	R10565_Hind	TTT T <u>AA GCT T</u> TT ATT TTT CAT CTT TTT TGC CTT C	Reverse олигонуклеотид для клонирования гена антитоксина <i>R0052_10565</i> в плазмиду pET-32a.
89.	F2403_EcoR	TTT T <u>GA ATT C</u> TT GCG GAA GAT TTT GAT TTT TAT C	Forward олигонуклеотид для клонирования гена токсина <i>Lhv_2403</i> в плазмиду pACYCDuet-1.
90.	R2403_Hind	TTT T <u>AA GCT T</u> CT ACT TGC TAT CCG AGT GAA AC	Reverse олигонуклеотид для клонирования гена токсина <i>Lhv_2403</i> в плазмиду pACYCDuet-1.
91.	F0815_EcoR	TTT T <u>GA ATT C</u> AT GTC TAA AAA GTT AGA AAA T	Forward олигонуклеотид для клонирования гена антитоксина <i>Lhv_0815</i> в плазмиду pET-32a.
92.	R0815_BamH	TTT T <u>GG ATC C</u> TT ATT TTT CAT GCA ATG TA	Reverse олигонуклеотид для клонирования гена антитоксина <i>Lhv_0815</i> в плазмиду pET-32a.
		Для ТА систем в штам	imax L. casei
93.	FC14520EcoR	TTTT <u>GAATTC</u> ATGGCAGCCACAAAGAAAGAAAC	Forward олигонуклеотид для определения НК последовательности ТА системы LCABL_14520-14530.
94.	FC14530EcoR	TTTT <u>GAATTC</u> ATGGACGAACTAAAGACGGCTG	Forward олигонуклеотид для клонирования гена токсина LCABL 14530 в плазмиду рЕТ32а.
95.	RC14530Hind	TTTT <u>AAGCTT</u> CTATTTACCCAAAAGGTTATGATGA	Reverse олигонуклеотид для определения НК последовательности ТА системы LCABL_14520-14530 и для клонирования гена токсина LCABL_14530 в плазмиду рЕТ32а.
96.	F577-30EcoR	TTTT <u>GAATTC</u> ATGAACGAACTAAAGACGGCTGT	Forward олигонуклеотид для клонирования у штамма 577 гена токсина LCABL_14530 в плазмиду рЕТ32а.
97.	R577-30Hind	TTTT <u>AAGCTT</u> CTATTTACCCAGAAGGTTATGATG	Reverse олигонуклеотид для клонирования у штамма 577 гена токсина LCABL_14530 в плазмиду рЕТ32а.
98.	F23-20EcoR	TTTT <u>GAATTC</u> ATGGCAGCCACAAAGAAGGAAAC	Forward олигонуклеотид для клонирования у штамма 23 гена токсина LCABL_14530 в плазмиду рЕТ32а.
99.	R23-30Hind	TTTT <u>AAGCTT</u> CTATTTAACCAGAAGGTTATGATGA	Reverse олигонуклеотид для клонирования у штамма 23 гена токсина LCABL_14530 в плазмиду рЕТ32а.

	Для определения отдельных видов лактобацилл					
100.	paraF	GTC ACA GGC ATT ACG AAA AC	Forward олигонуклеотид, специфичен к recA гену у			
			L.paraplantarum			
101.	pentF	CAG TGG CGC GGT TGA TAT C	Forward олигонуклеотид, специфичен к recA гену у			
			L.pentosus			
102.	planF	CCG TTT ATG CGG AAC ACC TA	Forward олигонуклеотид, специфичен к <i>recA</i> гену у <i>L</i> .			
			plantarum			
103.	pREV	TCG GGA TTA CCA AAC ATC AC	Reverse олигонуклеотид, специфичен к <i>recA</i> гену у <i>L</i> .			
			plantarum, L.paraplantarum, L.pentosus			
104.	EP-F	TTG GCA GTT TTA GTA GCA GCT	Forward олигонуклеотид межгенного района,			
			проксимального оперону F0F1 АТФ-синтазы у L.			
			helveticus			
105.	EP-R	GCA AGC CAA AGG CAG ATA AGA	Reverse олигонуклеотид межгенного района,			
			проксимального оперону F0F1 АТФ-синтазы у <i>L</i> .			
			helveticus			
		Для скрининга гибридн	ых плазмид			
106.	ACYCDuetUP1	GGA TCT CGA CGC TCT CCC T	Forward олигонуклеотид для отбора клонов для плазмиды			
107			pACYCDuet-1.			
107.	DuetDOWN1	GAT TAT GCG GCC GTG TAC AA	кеverse олигонуклеотид для отоора клонов для плазмиды			
108			растериент. Forward опигонужнестия иля отбора клонов иля плазмилы			
100.	T7prom	TTA ATA CGA CTC ACT ATA GG	рЕТ32а			
109			Reverse опигонуклеотил для отбора клонов для плазмилы			
107.	T7term	CTA GTT ATT GCT CAG CGG	nET32a			
		⊥ Лля оценки экспрессии оперона VefM-VoeBr-ь мет	олом ППР в режиме реального времени.			
110.	LGG 01291 F	AAG TCG ATG AAT GGC TTC CG	Forward олигонуклеотил на участок контрольного гена <i>ileS</i> .			
111.	LGG 01291 R	GCG TTT AAC GCC TTG TTT GG	Reverse олигонуклеотил на участок контрольного гена <i>ileS</i> .			
112.	Lc705 02727 100	CGA GTT GTT AAC GGA CTT CG	Forward олигонуклеотил на участок перекрывания генов			
-	F		антитоксина и токсина Lc705 02726 – Lc705 02727			
113.	Lc705 02727 100	GTT TGA TTG TCC GCT TGT CG	Reverse олигонуклеотид на участок перекрывания генов			
	R		антитоксина и токсина Lc705 02726 – Lc705 02727			

	Для поиска и изучения активности промоторов				
114.	yoeB_lr_IRD_3	CAAGCATCATCGGTCCAGGT	IRD800-меченный праймер для Primer extention		
115.	yoeB_lr_PCR _F	CTCGGCTAGGCTTAATCCAGT	Forward олигонуклеотид для получения фрагмента вPrimer		
			extention		
116.	yoeB_lr_PCR _R	TGTAGTCCGCCCAAGCATCA	Reverse олигонуклеотид для получения фрагмента в Primer		
			extention		
117.	SB2268	AGTGGTGAAATTGGTCTT	Forward олигонуклеотид на участок BOX+ YefM-YoeB		
118.	SB2269	AGTGCACATCCTGATGCG	Reverse олигонуклеотид на участок BOX+ YefM-YoeB		
119.	SB2271	GTAGAATTCACTTGAAACCAACACCAG	Forward олигонуклеотид на участок BOX+ PAT		
120.	SB2272	GTAGAATTCGCCGCGTCCCAATCGTTG	Forward олигонуклеотид на участок BOX		
121.	SB2273	GTAGGATCCCGGCGGAAATCACTATAA	Reverse олигонуклеотид на участок промотора PAT		
122.	SB2274	GTAGAATTCGAAAGGTAAGGTGCCGTT	Forward олигонуклеотид на участок промотора P1/2		
123.	SB2275	GTAGGATCCGGTTTCTTCGATGGCGTC	Reverse олигонуклеотид на участок промотора P1/2		
124.	SB2276	GTAGAATTCACAATGTGGTGGTTATGA	Forward олигонуклеотид на участок промотора Р3/4		
125.	SB2277	GTAGGATCCTCGGTCCAGGTTTTAATC	Reverse олигонуклеотид на участок промотора Р3/4		
126.	SB2278	GTAGAATTCTTGACGCATCAGGATGTG	Forward олигонуклеотид на участок промотора PsRNA		
127.	F0F1prF	TTT TGA ATT CCA TGT GGC CGT ACA CAT GC	Forward олигонуклеотид на участок промотора оперона F0F1		
			в качестве положительного контроля		
128.	F0F1prR2	TTT TGG ATC CCTTAC TGA AGC GGC GTC	Reverse олигонуклеотид на участок промотора оперона F0F1.		
		ATA	в качестве положительного контроля		

2.4 Электрофорез ДНК в агарозном геле и выделение ДНК из геля

Гель-электрофорез ДНК проводили в горизонтальном 1% – 1,5% агарозном геле (в зависимости от длины амплифицированного ПЦР фрагмента) в трис-боратном буфере (состав 10хТБЕ: 0,89М основной трис, 0,89М борная кислота, 20mM ЭДТА, pH 8.0, вода), содержащем 0,5 мкг/мл бромистого этидия при напряженности электрического поля 5В/см. Для определения размеров фрагментов ДНК в качестве стандартов использовали ДНК-маркеры фирмы Thermo Scientific, США. Выделение фрагментов ДНК из геля проводилось набором Thermo Fisher Scientific K0691.

2.5 Секвенирование ДНК

Секвенирование фрагментов ДНК по методу Сенгера проводили в Научноисследовательском институте физико-химической медицины ФМБА России (Москва) с помощью набора реактивов BigDye® Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, USA) с последующим анализом продуктов реакции на автоматическом секвенаторе 3730xl DNA Analyzer (Applied Biosystems,USA).

2.6 Биоинформатический анализ

2.6.1 Поиск известных ТА систем в секвенированных геномах лактобацилл

Для поиска использовались нуклеотидные и аминокислотные последовательности генов и белков RelBE систем различных бактерий. Сравнительный анализ нуклеотидных последовательностей проводили с использованием программы BLAST (<u>http://www.ncbi.nlm.nih.gov/blast</u>). Идентичность последовательностей устанавливали на основе статистической значимости совпадений последовательностей. Дополнительный анализ последовательностей проводили с помощью их выравнивания с использованием программы Clustal X (<u>http://www.ebi.ac.uk/Tools/clustalw/index.html</u>).

2.6.2 Создание базы данных ТА систем RelBE типа у лактобацилл

Для расширенной аннотации генов токсинов и антитоксинов использовались штаммы *Lactobacillus*, имеющих полногеномный сиквенс и были выполнены следующие шаги:

поиск гомологов генов в секвенированных геномах *Lactobacillus* \rightarrow предсказание открытых рамок чтения \rightarrow проверка белков соответствующих аннотированных генов с помощью InterPro [Jones P. et al., 2014] [http://www.ebi.ac.uk/interpro/]

Гомологичные последовательности были идентифицированы с помощью tBlastX alligner с пороговым значением e-value $\leq 10^{-20}$. Рамки считывания генов были предсказаны при помощи алгоритма GeneMarkS [Besemer J. et al., 2001] [http://exon.gatech.edu/GeneMark/]. В том случае,

если гомологичные последовательности и ген, предсказанный GeneMakrS, перекрывались более чем на 80%, то данный ген рассматривали как возможного кандидата. Белки, соответствующие проаннотированным генам, были проверены при помощи алгоритма InterPro и были сгруппированы по сходству последовательностей (гены, принадлежащие одной группе, схожи более чем на 80%). Использовались следующие обозначения для генов:

[имя группы]_[номер группы]_[номер подгруппы].

Например: L.rhamnosus_Lc_705_RelE_2_1; L.rhamnosus_GG_RelE_2_2.

Данная запись обозначает, что ген относится к группе RelE_2 к подгруппе 1 или 2. Подгруппы между собой отличаются отдельными нуклеотидными заменами и сходны более чем на 98%.

2.6.3 Определение филогенетического родства и построение деревьев

Выравнивание нуклеотидных и аминокислотных последовательностей проводилось с помощью программы MUSCLE [Edgar R.C. et al., 2004], входящей в пакет программ MEGA 5.2 [Tamura K. et al., 2011]. Филогенетическое дерево на основе выровненных последовательностей строили с помощью программы MEGA 5.2 методом «ближайших соседей» (Neighbor-joining, NJ). Для оценки достоверности применяли бутстреп-тест (1000 реплик). Для укоренения дерева использовали нуклеотидную последовательность гена *B. subtilis*.

2.6.4 Поиск новых ТА систем

Для поиска новых ТА систем в штаммах *L.helveticus* нами был написан скрипт по следующим параметрам: гены токсина и антитоксина расположены либо на близком расстоянии друг от друга (до 70 пн), либо перекрываются (на 30 пн); ген антитоксина предшествует гену токсина и его длина, обычно, меньше [Sevin E.W. et al., 2007], оперон имеет величину примерно 800 пн. После применения данного скрипта к анотированным геномам *L.helveticus* (H10, R0052, DCP5471) анализировались полученные данные и были удалены гены-кандидаты с уже известной функцией.

2.7 Клонирование генов ТА систем в экспрессионные векторы

Рестрикция

Использовали эндонуклеазы рестрикции для быстрого гидролиза Fast Digest (Thermo Fisher Scientific). Рестрицирующие эндонуклеазы добавляли из расчета 10 ед фермента на 1 мкг ДНК. Рестрикцию проводили в течение 30 минут при температуре 37°С, после чего проводили электрофорез в агарозном геле.

Лигирование

Лигирование вектора и клонируемого фрагмента ДНК проводили, используя фермент Т4 ДНК-лигазу (Thermo Fisher Scientific). Соотношение вектора и клонируемого фрагмента в реакционной смеси составляло 1:2 по количеству молекул. Реакционная смесь для лигирования имела следующий состав: плазмидный вектор (0,2-0,4 мкг), фрагмент (0,4-0,8 мкг), лигазный буфер (1/10 объема), Т4 ДНК лигаза (30 ед). Реакцию проводили при температуре 21°C в течение 40 минут.

Получение компетентных клеток E.coli для кальциевой трансформации

10 мл среды LB засевали штаммом *E.coli* и инкубировали в термостатированном шейкере в течение 18 часов при 37°C при 250 об/мин. 200 мкл ночной культуры засевали в 10 мл среды LB и инкубировали в тех же условиях до достижения оптической плотности $OD_{600}=0,6-0,8$. Клетки собирали центрифугированием при 5 000 об/мин в течение 15 мин при +4°C. Осадок ресуспендировали в 5 мл холодного свежеприготовленного 0,1М раствора CaCl₂ и инкубировали в ледяной бане в течение 40 мин. Затем клетки осаждали центрифугированием при +4°C в течение 15 мин при 4 000 об/мин. Осадок ресуспендировали в 1 мл 0,1М раствора CaCl₂ и инкубировали в ледяной бане в течение 1 часа. Аликвоты полученных клеток по 200 мкл использовали сразу или хранили при -80°C с добавлением 20-50% глицерина (в течении 1-2 месяцев) [Sambrook J. et al., 1989].

Трансформация клеток E.coli плазмидной ДНК или лигазной смесью

К компетентным клеткам свежим или размораженным в ледяной бане добавляли лигазную смесь или плазмидную ДНК в концентрации 0,2 – 0,3 мкг и инкубировали во льду в течение 40 мин. Затем клетки подвергали тепловому шоку при 42°C в течение 2 - 3 мин. Далее снова охлаждали в ледяной бане в течение 5 мин, затем к клеточной суспензии добавляли по 1 мл среды LB. Клетки инкубировали в течение 40-60 мин в термостате при 37°C (1-2 генерации). Затем суспензию высевали на чашки с твердой средой, содержащей нужные антибиотики.

Трансформация клеток B.subtilis

Бактериальная культура выращивается ночь в полноценной питательной среде LB на качалке при температуре $32-37^{0}$ C. Утром культура разводится в 20 раз теплой средой Спицайзена I и выращивается 4,5 час с аэрацией при 37^{0} C, до начала log-фазы роста. Культура разводится теплой средой Спицайзена II в 10 раз. При трансформации плазмидной ДНК ко II среде добавляли CaCl₂ до 0,5mM и MgCl₂ до 2,5mM (по 5 мкл на 1 мл из растворов 0,1M и 0,5M). Во II среде культура растет 1,5 час. 0,5мл компетентной культуры смешивается с ДНК и инкубируется со слабым качанием 60 минут. После высева на селективную среду с антибиотиком трансформанты растут 1-2 суток.

Анализ рЕТ- и рАС-рекомбинантов методом ПЦР-скрининга колоний

Скрининг рекомбинантных клонов осуществляли при помощи ПЦР с использованием стандартных праймеров T7prom и T7term (для гибридных плазмид на основе pET32a) и pACYCDuet_Up1 и pDuet_Down1 (для гибридных плазмид на основе pACYCDuet-1). Колонии после трансформации скалывали и ресуспендировали в 10 мкл стерильной воды. 3 мкл суспенции клеток использовали для реакции ПЦР. Результаты амплификации учитывали путем анализа исследуемых образцов с помощью электрофореза в 1% агарозном геле. Из отобранных трансформантов выделяли плазмидные ДНК и проводили секвенирование НП для доказательства наличия вставки и идентичности полученной НП искомой.

2.8 Определение активности ТА систем в клетках *E.coli*.

Активность белков токсинов в клетках *E.coli* BL21 (DE3) определяли по характеру роста культур на твердой и в жидкой средах в присутствии индуктора IPTG (0,5 mM) и без него. В первом случае ночные культуры клеток *E.coli*, содержащие гибридные плазмиды с клонированными генами токсинов, разводили в 100 раз, выращивали до $OD_{600}=0,2$, и высевали или раскапывали в разведениях на чашки LB-агара; рост культур фиксировали через 18 часов при 37°С. Для определения активности клонированных токсинов по характеру роста штаммов *E.coli* в жидкой среде дневные культуры, выращенные до $OD_{600}=0,2$, были разделены на две части. Одна часть продолжала расти при тех же условиях, а ко второй части добавляли IPTG. За ростом культур следили, измеряя OD_{600} на спектрофотометре PD-303 (APEL, Japan). Для определения активности антитоксинов совмещали в клетках *E.coli* BL21 (DE3) ген токсина, клонированный на плазмиде pACYCDuet-1, и соответствующий ему ген антитоксина, клонированный на плазмиде pET32a, далее определяли характер роста штамма в присутствии IPTG и без него.

2.9 Выделение РНК

РНК получали из стационарных культур (18 часов) и культур логарифмической стадии роста (8 часов). Использовали набор RNeasy Mini Kit («Qiagen»). 7 мл культуры откручивали в течение 10 мин при 7000 об/мин, удаляли супернатант, осадок промывали ТЕ буфером (10мМ TrisHCl, 1мМ EDTA, pH 8.0) и ресуспендировали в 500 мкл буфера. Суспензию переносили в 2-мл центрифужную пробирку и вносили 100 мкл лизоцима (90 мг/мл) и инкубировали 60 минут при 37°С. После инкубации переносили все содержимое в лизисные пробирки на 2 мл (innuSPEED Lysis Tube B) и гомогенизировали суспензию 3 раза по 20сек на приборе SpeedMill Plus (Analytik Jena AG-Bio), затем охлаждали пробирки на льду. Осаждали 3 мин на холоде при 5000 об/мин и переносили 300 мкл в новую пробирку для выделения PHK набором RNeasy Mini Kit («Qiagen») в соответствии с протоколом. Концентрацию и качество PHK и ДНК определяли на биоанализаторе Bioanalyzer 2100 («Agilent»).

2.10 Обратная транскрипция

Для получения кДНК по матрице мРНК проводили реакцию обратной транскрипции. Суммарную РНК (1 мкг) обрабатывали ДНКазой I (Thermo Scientific, США) в соответствующем буфере 15 мин при комнатной температуре. Затем добавляли 25 мМ ЭДТА (Thermo Scientific, США) и инкубировали 10 мин. при 65°С. Добавляли 100 нг случайных гексануклеотидных праймеров, смесь прогревали до 70°С в течение 5 мин. и помещали на лед на 2 мин. Затем в реакцию добавляли 1 мМ смеси нуклеотидов; 5-кратный реакционный буфер, содержащий 250 мМ Tris-HCl (pH 8.3, 25°C), 250 мМ KCl, 20 мМ MgCl₂ и 50 мМ DTT (Thermo Scientific, США); 200 единиц обратной транскриптазы M-MuLV (Thermo Scientific, США). Реакцию проводили в объеме 20 мкл при следующем температурном режиме: 25°C - 10 мин., 42°C - 60 мин., 50°C - 10мин., 70°C - 10 мин. Препараты кДНК хранили при температуре -80°C.

2.11 Количественная ПЦР в режиме реального времени

Для оценки уровня мРНК генов использовали праймеры представленные в таблице 7. Для проведения ПЦР-РВ использовали ПЦР-смесь 2FRT, содержащую ионы Mg²⁺ (Amplisens, MockBa); термостабильную ДНК-полимеразу TaqF (Amplisens, MockBa); 25-кратную смесь нуклеотидов (Thermo Scientific, США); 20-кратный интеркалирующий краситель EVA Green (Biotium, США); референсный краситель ROX (Синтол, Россия); синтезированные праймеры для целевых и контрольных генов (Синтол, Россия) (таблица 7). Приготовленные реакционные смеси по 8 мкл вносили в 96-луночный планшет, после чего добавляли в каждую лунку по 2 мкл (~10 нг) матрицы (кДНК) и плотно закрывали планшет пленкой. Каждая проба имела три повторности. ПЦР-РВ проводили на приборе Applied Biosystems 7500 Real-Time PCR System (Life Technologies, США) с использованием программного обеспечения RQ (Relative Quantitation software, Life Technologies, США). Использовали следующий температурный режим: предварительная денатурация и активация фермента при 95°C в течение 15 мин. (по протоколу для TaqF ДНК-полимеразы); 50 циклов: денатурация - 15 сек. при 95°С, отжиг праймеров и зонда, элонгация - 1 мин. при 60°С.

Полученные данные анализировали с использованием контрольных генов и относительного количественного или ΔΔСt-метода. Относительный уровень мРНК (*R*) рассчитывался по формуле:

$$R = \frac{(2^{\log_2(1+E^{\text{цель}})\times C_t^{\text{цель}} - \log_2(1+E^{\text{контроль}})\times C_t^{\text{контроль}})_{\text{контрольный образец}}}{(2^{\log_2(1+E^{\text{цель}})\times C_t^{\text{цель}} - \log_2(1+E^{\text{контроль}})\times C_t^{\text{контроль}})_{\text{опытный образец}}}$$

где *E* – эффективность реакции (доля амплифицированных фрагментов), Ct – пороговый цикл (усредненный по 3-м повторностям), контроль – контрольный ген, цель – целевой ген.

Эффективности всех реакций были более 90% (E > 0.9). Все вычисления выполнены с использованием разработанного приложения АТГ (<u>А</u>нализ <u>Т</u>ранскрипции <u>Г</u>енов, Свидетельство №2008612585, 2008, Роспатент, РФ) совместимого с программным обеспечением амплификаторов Applied Biosystems серий 7000/7500 [Krasnov G.S., et al. 2011; Senchenko V.N., et al., 2011]. Программа разработана для оценки относительного уровня мРНК в парных образцах с использованием нескольких контрольных генов, позволяет определять эффективность ПЦР тремя различными методами, оценивать вариабельность контрольных генов и «условных норм». С учетом вариабельности контрольных генов значимыми считали изменения экспрессии в 2.0 и более раз.

2.12 Удлинение праймера (Primer extention)

Ргітег extention анализ с IRD800-меченный праймером yoeB_lr_IRD_3 выполняли следующим образом: 5 мкг PHK растворяли в 13 мкл DEPC-H₂O, добавить 1 мкл dNTPs (10мМ), 2 пмоль IRD800-меченного праймера, смесь денатурировали при 65°C в течение 5 мин. Далее на льду добавить 4 мкл 5x first-strand буфера, 1 мкл 0,1М ДТТ, 1 мкл RiboLockTM ингибитора PHKазы (40 ед/мкл) и 1 мкл SuperScriptTMIII (200 ед/мкл). Смесь инкубировали при 55°C в течение 60 мин с последующей инактивацией при 70°C в течение 10 мин. Затем, проводили гидролиз PHK 10 мкл 1M NaOH при 70 °C в течение 10 мин и нейтрализировали с 25 мкл 1M HEPES (pH 7,0). Референсный ПЦР-фрагмент, полученный с праймерами yoeB_lr_PCR F и yoeB_lr_PCR R, был секвенирован по Сенгеру с помощью праймера yoeB lr IRD 3.

2.13 Определение точки начала транскрипции при помощи специфической амплификации концевых фрагментов кДНК (RLM-RACE)

Работу проводили по протоколу набора FirstChoice^R RLM-RACE (Life Technologies). Тотальная PHK из штамма *L.rhamnosus* 24 дст была обработана щелочной фосфатазой из кишечника теленка, чтобы удалить свободный 5' фосфат с деградированной мPHK, pPHK, тPHK и возможной примесной ДНК (5'трифосфаты остались интактными). Далее PHK обрабатывалась щелочной фосфатазой из растений табака для удаления пирофосфатов с интактной мPHK с образованием ортофосфатных остатков. После этой обработки PHK лигировали с 5'RACE адаптером и проводили обратную транскрипцию, используя специфический праймер для гена yoeB_lr_IRD_down. Полученную кДНК амплифицировали с 5'RACE внешним праймером и праймером, специфическим для гена yoeB_lr_IRD_up. После очистки полученный ПЦР-фрагмент лигировали в векторе pCRII-TOPO. После трансформации *E. coli* DH5 α плазмиды из отобранных трансформантов были секвенированы с использованием праймера T7.

2.14 Создание lacZ-транскрипционных конструкций (fusions) и определение функционирования промоторов по активности β-галактозидазы в клетках *B.subtilis*

Для измерения активности промоторов использовалась плазмида pMG16 и штамм B.subtilis DB104. Предполагаемые промоторные области синтезировали в реакции ПЦР на матрице хромосомной ДНК штамма L.rhamnosus 24дст, с праймерами, представленными в таблице 6. Предполагаемые промоторные районы сначала клонировали на плазмиде рЕТ32а и в клетках E.coli TG1, далее переклонировали в плазмиду pMG16 и штамм E.coli TG1. Трансформанты отбирали по маркеру устойчивости к спектиномицину. Илентичность нуклеотидной последовательности клонируемых участков определяли секвенированием фрагментов гибридных плазмид. Далее плазмиды с нужной вставкой переносили с помощью генетической трансформации в клетки *B.subtilis* DB104, предварительно обработав клоны рестриктазой Scal для линеаризации плазмид. Гибридные плазмиды не могли реплицироваться в клетках *B.subtilis*, но могли встраивать клонируемый фрагмент с маркером Sp^{R} в ген α амилазы, делая ген неактивным. Выросшие клоны пересевали на чашки с крахмалом и спектиномицином и инкубировали ночь. Затем добавляли в чашки раствор йода и отбирали Amv-Sp^R клоны для измерения β-галактозидазной активности. Полученные клетки *B.subtilis* DB104 инкубировали 18 ч, измеряли OD600, разводили культуру до OD = 0.1 и инкубировали 2, 4 и 6 часов. После каждой инкубации измеряли оптическую плотность и пересчитывали необходимое дл\ стандартного опыта количество культуры по формуле:

X(MJ) = 625 MJ/OD

Для измерения β -галактозидазной активности предполагаемых промоторов к каждой отобранной пробе добавляли 240 мкл Z-буфера (состав г/л: Na₂HPO₄12H₂O – 25,32; NaH₂PO₄2H₂O – 6,24; KCl – 0,75; MgSO₄ x 7H₂O – 0,75), β -меткаптоэтанолом, и 5 мкл (60мг/мл) лизоцима. Инкубировали 10 мин при 37⁰C, затем центрифугировали 2 минуты. Отбирали 200 мкл супернатанта и переносили в пробирку, содержащую 600 мкл Z-буфера и 4мг/мл OH $\Phi\Gamma$ (орто-нитрофенил- β -D-галактопиранозидом). Инкубировали при 28⁰C от 1 мин до 45 мин, в зависимости от того, как будет меняться окраска. Останавливали реакцию 0,5M Na₂CO₃. Затем определяли OD₄₂₀ и OD₅₅₀. Активность β -галактозидазы рассчитывали по формуле Миллера [Миллер Дж., 1976]: ((OD₄₂₀-1,75 OD₅₅₀)/ (Тмин*Vмл*OD₆₀₀))*1000.

ГЛАВА З. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЯ

3.1 Видовая идентификация штаммов лактобацилл из лабораторной коллекции

Первым этапом работы было формирование и характеристика коллекции штаммов лактобацилл в соответствии с существующей системой классификации бактерий рода *Lactobacillus* [Pot B. et al., 2014]. Базой для классификации служила база данных по гену 16S PHK (http://www.ncbi.nlm.nih.gov/). Коллекция создавалась из:

- штаммов, выделенных из организма людей жителей центральной области России – в Тверской Государственной Медицинской Академии (кафедра микробиологии и иммунологии). Штаммы выделялись из слюны, фекалий, содержимого влагалища;
- штаммов, полученных из ФГУН МНИИЭМ им. Г.Н. Габричевского, ВНИИ Молочной промышленности, ГИСК им. Л.А. Тарасевича. Эти штаммы имеют промышленное значение и используются в производстве молочнокислых продуктов и БАДов.

Всего в коллекции насчитывалось 62 различных штамма лактобацилл. Все штаммы были идентифицированы при их выделении до рода и вида на основании морфологических и биохимических свойств. В настоящей работе, совместно с Д.Х. Кясовой, была проведена идентификация окончательная штаммов молекулярно-генетическими методами по нуклеотидной последовательности гена 16S рибосомальной РНК. Часть нуклеотидных последовательностей была депонирована в GenBank (http://www.ncbi.nlm.nih.gov/genbank/). идентификации лактобацилл представлены в таблице 8, нуклеотидные Результаты последовательности гена 16S РНК представлены в Приложении А. Точная видовая характеристика штаммов была особенно важна в данной работе, потому что изученные ТА системы в подавляющем большинстве являются видоспецифичными.

N⁰	Вид	Штамм	Ближайший гомолог по данным BLASTN		Ближайший гомолог другого вида по данным BLASTN			
п/п	лактобацилл		Вид, штамм	Идентифик атор в GenBank	% идентичных нуклеотидов	Вид, штамм	Идентифик атор в GenBank	% идентичных нуклеотидов
1.	L. plantarum	CS 396	<i>L. plantarum</i> JCM 1149 <i>L. paraplantarum</i> DSM 10667	NR_115605 NR_025447	853/856=99% 663/674=98%	<i>L. fabifermentans</i> DSM 21115	NR_113339	657/674=97%
2.	L. plantarum	8-PA-3	<i>L. plantarum</i> JCM 1149 <i>L. paraplantarum</i> DSM 10667	NR_115605 NR_025447	752/754=99% 748/754=99%	<i>L. fabifermentans</i> DSM 21115	NR_113339	742/754=98%
3.	L. plantarum	90-TC- 4	<i>L. plantarum</i> JCM 1149 <i>L. paraplantarum</i> DSM 10667	NR_115605 NR_025447	667/674=99% 663/674=98%	<i>L. fabifermentans</i> DSM 21115	NR_113339	657/674=97%
4.	L. plantarum	гКНМ 101	<i>L. plantarum</i> JCM 1149 <i>L. paraplantarum</i> DSM 10667	NR_115605 NR_025447	804/826=97% 800/826=97%	<i>L. fabifermentans</i> DSM 21115	NR_113339	794/826=96%
5.	L. plantarum	K9L	L. plantarum ST-III L. pentosus 124-2	NC_014554 NR_029133	780/780=100% 780/780=100%	L.paraplantarum DSM 10667	NR_025447	777/780=99%
6.	L. plantarum	46к	L. plantarum WCFS1	NC_004567	780/780=100%	L. brevis ATCC 367	NC_008497	731/789=93%
7.	L. plantarum	36ст	L. plantarum ST-III	NC_014554	780/780=100%	L. brevis ATCC 367	NC_008497	732/789=93%
8.	L. plantarum	106зв	L. plantarum ST-III	NC_014554	779/780=99%	L. brevis ATCC 367	NC_008497	733/789=93%
9.	L. plantarum	29ст	L. plantarum ST-III	NC_014554	649/650=99%	L. brevis ATCC 367	NC_008497	605/659=92%
10.	L. plantarum	90ст	L. plantarum ST-III	NC_014554	800/800=100%	L. brevis ATCC 367	NC_008497	750/809=93%
11.	L. plantarum	191г	L. plantarum WCFS1	NR_075041	649/654=99%	L. brevis ATCC 367	NC_014554	751/809=93%
12.	L. plantarum	29ск	L. plantarum ST-III	NC_014554	1440/1441=99%	L. brevis ATCC 367	NC_008497	1354/1448=94%
13.	L. plantarum	32ск	L. plantarum ST-III	NC_014554	1435/1436=99%	L. brevis ATCC 367	NC_008497	1339/1420= 94%
14.	L. plantarum	46ск	L. plantarum ST-III	NC_014554	1448/1448=100%	L. brevis ATCC 367	NC_008497	1371/1460= 94%
15.	L. plantarum	75ск	L. plantarum WCFS1	NR_075041	1467/1471=99%	L. brevis ATCC 367	NR_075024	1376/1467=94%
			<i>L. paraplantarum</i> DSM 10667	NR_025447	1464/1471=99%			
16.	L. plantarum	90ск	L. plantarum WCFS1	NR_075041	1450/1450=100%	L. brevis ATCC 367	NR_075024	1372/1462= 94%

Таблица 8. Видовая идентификация штаммов лактобацилл на основе гена 16S рРНК.

17.	L. rhamnosus	421-2	<i>L. rhamnosus</i> NBRC 3425	NR_113332	802/804=99%	L. casei ATCC 334	NR_075032	787/806=98%
18.	L. rhamnosus	7дст	L. rhamnosus GG	NC_013198	780/780=100%	L. casei ATCC 334	NR_075032	762/780 =98%
19.	L. rhamnosus	24дст	<i>L. rhamnosus</i> NBRC 3425	NR_113332	599/599=100%	L.casei NBRC 15883	NR_113333	584/600=97%
20.	L. rhamnosus	К32	<i>L. rhamnosus</i> NBRC 3425	NR_113332	780/780=100%	L.casei NBRC 15883	NR_113333	764/781=98%
21.	L. rhamnosus	38к	<i>L. rhamnosus</i> NBRC 3425	NR_113332	780/780=100%	L.casei NBRC 15883	NR_113333	764/781=98%
22.	L. rhamnosus	50зв	<i>L. rhamnosus</i> NBRC 3425	NR_113332	734/735=99%	L. casei ATCC 334	NR_075032	717/735=98%
23.	L. rhamnosus	72зв	<i>L. rhamnosus</i> NBRC 3425	NR_113332	779/780=99%	L. casei ATCC 334	NR_075032	762/780=98%
24.	L. rhamnosus	40ст	<i>L. rhamnosus</i> NBRC 3425	NR_113332	749/750=99%	L. casei ATCC 334	NR_075032	733/750=98%
25.	L. rhamnosus	80ст	<i>L. rhamnosus</i> NBRC 3425	NR_113332	600/600=100%	<i>L. paracasei</i> NBRC 15889	NR_113337.1	575/587=98%
26.	L. rhamnosus	22гн	<i>L. rhamnosus</i> NBRC 3425	NR_113332	562/564=99%	L. casei ATCC 334	NR_075032	546/564=97%
27.	L. rhamnosus	2гн	<i>L. rhamnosus</i> NBRC 3425	NR_113332	741/741=100%	L.casei NBRC 15883	NR_113333	725/742=98%
28.	L. rhamnosus	51 гн	<i>L. rhamnosus</i> NBRC 3425	NR_113332	673/673=100%	L.casei NBRC 15883	NR_113333	657/674=97%
29.	L. rhamnosus	45д	<i>L. rhamnosus</i> NBRC 3425	NR_113332	731/732=99%	L.casei NBRC 15883	NR_113333	715/733=98%
30.	L. rhamnosus	50ст	L. rhamnosus GG	NR_102778.1	630/632=99%	L.casei NBRC 15883	NR_113333	613/633=97%
31.	L. rhamnosus	26ск	<i>L. rhamnosus</i> NBRC 3425	NR_113332	1439/1442=99%	L. casei ATCC 334	NR_075032	1422/1442=99%
32.	L. rhamnosus	61ск	<i>L. rhamnosus</i> NBRC 3425	NR_113332	1413/1416=99%	L. casei ATCC 334	NR_075032	1396/1416=99%
33.	L. fermentum	гКНМ 526	<i>L.fermentum</i> CIP 102980	NR_104927	834/838=99%	L. ingluviei KR3	NR_028810	790/841=94%
34.	L. fermentum	2пр	L. fermentum IFO 3956	NC_010610	779/780=99%	L. reuteri JCM 1112	NC_010609	718/786=91%

35.	L. fermentum	11зв	L. fermentum IFO 3956	NC_010610	780/780=100%	L. reuteri DSM 20016	NC_009513	718/785=92%
36.	L. fermentum	11дст	L. fermentum IFO 3956	NC_010610	780/780=100%	L. reuteri JCM 1112	NC_010609	719/786=92%
37.	L. fermentum	291г	L. fermentum ATCC	NZ_GG6699	800/800=100%	L. reuteri DSM 20016	NC_009513	739/805=92%
			14931	09				
38.	L. fermentum	57ск	L.fermentum IFO 3956	NC_010610	1279/1280-99%	L. reuteri SD2112	NC_015697	1218/1286=95%
39.	L. fermentum	59ск	L.fermentum IFO 3956	NC_010610	1463/1467=99%	L. reuteri MM2-3	NZ_GG70471	1383/1474=94%
							1.1	
40.	L. fermentum	60ск	L.fermentum IFO 3956	NC_010610	1460/1460=100	L. reuteri MM2-3	NZ_GG69376	1375/1462=94%
					%		4	
41.	L. fermentum	102ск	L.fermentum CECT 5716	NC_017465	1452/1454=	L. reuteri MM2-3	NZ_GG69376	1367/1456=94%
					99%		4	
42.	L. fermentum	103ск	L.fermentum CECT 5716	NC_017465	1434/1436=	L. reuteri MM2-3	NZ_GG69376	1358/1442=94%
					99%		4	
43.	L.casei/	гКНМ	L.casei ATCC 334	NR_075032	566/568=99%	L. rhamnosus NBRC	NR_113332	550/568=97%
	paracasei	23	L. paracasei NBRC	NR_113337	565/568=99%	3425		
			15889					
44.	L. casei/	гКНМ	L. casei ATCC 334	NR_075032	795/800=99%	L. rhamnosus NBRC	NR_113332	778/800=97%
	paracasei	577	L. paracasei R094	NR_025880	795/800=99%	3425		
45.	L. casei/	К₃Ш₂₄	L. casei ATCC 334	NR_075032	499/500=99%	L. rhamnosus NBRC	NR_113332	485/488=99%
	paracasei		L. paracasei NBRC	NR_113337	498/500=99%	3425		
			15889					
46.	L. casei/	20011	L. casei ATCC 393	NR_041893	1427/1431=99%	L. rhamnosus NBRC	NR_113332	1411/1431=99%
	paracasei		L. paracasei NBRC	NR_113337	1414/1430=99%	3425		
			15889					
47.	L. casei/	17к	L. casei Zhang	NC_014334	780/780=100%	L. rhamnosus Lc 705	NC_013199	765/782=98%
	paracasei		L. paracasei R094	NR_025880				
48.	L. casei/	42ст	L. casei ATCC 334	NR_075032	587/591=99%	L. rhamnosus GG	NR_102778	570/591=96%
	paracasei		L. paracasei NBRC	NR_113337	586/591=99%			
			15889					
49.	L. casei/	48ст	L. casei ATCC 334	NR_075032	606/606=100%	L. rhamnosus GG	NR_102778	588/606=97%
	paracasei		L. paracasei NBRC	NR_113337	605/606=99%			
			15889					
50.	L. casei/	51ст	L. casei ATCC 334	NR_075032	564/570=99%	L. rhamnosus GG	NR_102778	547/570=96%

-								
	paracasei		L. paracasei NBRC 15889	NR_113337	563/570=99%			
51.	L. helveticus	Er 315/	L. helveticus NBRC	NR_113719	450/450=100%	L. acidophilus NCFM	NR_075045	443/450=98%
		402	15019					
52.	L. helveticus	100 аш	L. helveticus NBRC	NR_113719	509/509=100%	L. acidophilus NCFM	NR_075045	506/509=99%
			15019					
53.	L. helveticus	NK-1	L. helveticus DPC 4571	NR_075047	748/750=99%	L. acidophilus NCFM	NR_075045	739/750=99%
54.	L. helveticus	NNIE	L. helveticus NBRC	NR_113719	404/405=99%	L. acidophilus NCFM	NR_075045	401/405=99%
			15019					
55.	L. brevius	15f	L.brevis ATCC 367	NC_008497	499/500=99%	L. plantarum ST-III	NC_014554	460/509=90%
56.	L. brevis	47ст	L.brevis ATCC 376	NC_008497	500/500=100%	L. spicheri LTH 5753	NR_025579	528/554=95%
57.	L. brevis	52ст	L.brevis ATCC 376	NC_008497	599/600=99%	L. spicheri LTH 5753	NR_025579	578/603=96%
58.	L. salivarius	44ст	L. salivarius UCC118	NC_007929	737/738(99%)	L. ruminis ATCC	NZ_GL8331	754/806=94%
						25644	09	
59.	L. salivarius	64ск	L. salivarius UCC118	NC_007929	1449/1454=99%	L. animalis KCTC 3501	NZ_GL5731	1380/1469=94%
							55.1	
60.	L. salivarius	78ск	L. salivarius UCC118	NC_007929	1453/1457=99%	L. animalis KCTC 3501	NZ_GL5731	1385/1472=94%
							55.1	
61.	L. mucosa	46ст	L.mucosae str. CCUG	NR_024994	590/590=100%	L. gastricus Kx156A7	NR_029084	560/597=94%
			43179					
62.	L. johnsonii/	K21	L. johnsonii FI9785	NC_013504	900/900=100%	L. iners DSM 13335	NR_036982	856/903=95%
	gasseri		L. gasseri JV-V03	NZ_GL3795	895/900 =99%			

С помощью определения нуклеотидной последовательности гена 16S РНК однозначно удалось идентифицировать родовую принадлежность всех штаммов, а также видовую принадлежность штаммов видов *L. rhamnosus, L.brevis, L.salivarius и L.mucosa.* Штаммы групп *L. helveticus – L. acidophilus; L. plantarum – L.paraplantarum – L.pentosus; L. casei – L. paracasei, L. johnsonii – L. gasseri* не могли быть однозначно разделены данным методом: нуклеотидные последовательности исследуемого фрагмента 16S РНК имели у данных групп штаммов 99-100% идентичности.

Для разделения штаммов внутри группы *L. helveticus – L. acidophilus* мы использовали метод, разработанный в лаборатории и запатентованный [Международная заявка на патент $N \ge 2012103277$] – определение нуклеотидной последовательности межгенного района, предшествующего оперону F0F1 АТФ-синтазы [Полуэктова Е.У. и др., 2013]. Нуклеотидные последовательности данного района для штаммов NK-1, NNIE, 100 аш, Er315/402 представлены в приложении Б, сравнение последовательностей межгенного района между штаммами 100аш, Er315/402, NK1, NNIE и штаммами лактобацилл из GenBank представлен в таблице 9. На основании полученных данных все 4 штамма были отнесены к виду *L. helveticus*.

Таблица 9. Процент идентичности НП межгенного района, проксимального оперону F0F1 АТФсинтазы, между штаммами 100аш, Er315/402, NK1, NNIE и штаммами лактобацилл из GenBank.

	Вид L.helveticus	Вид L.acidophilus
Штаммы	DCP 4571, H10, MTCC	NCFM, DSM 20079, CFH, DSM 9126, CIRM-BIA
	5463, DSM 20075	445, CIP 76.13, ATCC 4356, DSM 20242, CIRM-
		BIA 442, La-14, ATCC 4796, 30SC
Процент	100-99%	≤ 87%
идентичности		

Для разделения штаммов группы *L. plantarum – L.paraplantarum – L.pentosus* мы использовали ПЦР с праймерами, специфичными к *recA* гену [Torriani S. et al., 2001]. Каждый из трех близких видов дает ПЦР-продукт только со своим специфическим F-праймером (при общем R праймере). По этому тесту все проверенные штаммы коллекции принадлежат к виду *L.plantarum*.

В двух случаях – для близкородственных штаммов групп *L. casei – L. paracasei* и *L. johnsonii – L. gasseri* точная видовая принадлежность штаммов не была определена.

Определенная нами видовая принадлежность штаммов не всегда соответствовала установленной ранее. Это было особенно важно для производственных штаммов (таблица 10).

№ п/п	Штамм	Родовая и видовая принадлежность (по паспортным данным)	Родовая и видовая принадлежность (по данным молекулярно- генетическому анализу)
1.	90-TC-4	L. fermentum	L. plantarum
2.	гКНМ 101	L. delbrueckii	L. plantarum
3.	Er315/402	L. acidophilus	L. helveticus
4.	100 аш	L. acidophilus	L. helveticus
5.	NK-1	L. acidophilus	L. helveticus
6.	NNIE	L. acidophilus	L. helveticus
7.	гКНМ 23 л1	L. brevis	L. casei/paracasei
8.	гКНМ 577	L. casei	L. casei/paracasei
9.	K ₃ III ₂₄	L. acidophilus	L. casei
10.	421-2	L. plantarum	L. ramnosus
11.	гКНМ 526	L. delbrueckii	L. fermentum

Таблица 10. Производственные штаммы лактобацилл, для которых была изменена видовая принадлежность.

В коллекции культур лактобацилл, выделенных из микробиоты здоровых людей центрального региона России, было идентифицировано 9 видов лактобацилл: *L. plantarum, L. helveticus, L. casei/paracasei, L. rhamnosus, L. fermentum, L. brevis, L. salivarius, L. mucosa, L. johnsonii/gasseri*. Для установления родственных взаимоотношений между разными видами рода *Lactobacillus* было построено филогенетическое дерево исследованных штаммов лактобацилл по нуклеотидной последовательности фрагмента гена 16S рибосомальной PHK, которое представлено на рисунке 8.

При филогенетическом анализе получили дерево с ветвями, делящимися на 6 кластеров, которые соответствуют 9-ти видам бактерий. Анализ кластеров показал, что в эволюционном плане наиболее близкими оказались виды *L.casei/paracasei – L. rhamnosus, L. fermentum – L.mucosa, L.helveticus – L.johnsonii.*

Рисунок 8 – Филогенетическое дерево на основе последовательности фрагмента гена 16S РНК всех видов и штаммов *Lactobacillus*, использованных в данной работе.

Таким образом, на первом этапе работы была впервые определена молекулярногенетическим методом видовая принадлежность 62 штаммов лактобацилл, для 53 штаммов –до вида, для 9 – для группы видов. Для 11 производственных штаммов это позволило изменить их видовую принадлежность, установленную ранее по фенотипическим признакам.

3.2 Биоинформатический поиск и структура модулей ТА систем суперсемейства RelBE типа в секвенированных геномах лактобацилл

Следующим этапом работы был поиск ТА систем в геномах тех видов бактерий, которые наиболее часто встречаются в микробиоте здоровых людей центральной области России: *L.casei, L.fermentum, L.plantarum, L.rhamnosus* и *L.helveticus.* Для биоинформатического анализа были взяты геномы штаммов данных видов, для которых, по данным GenBank на 2011 год, была известна нуклеотидная последовательность генома (<u>http://www.ncbi.nlm.nih.gov/genome/913</u>).

генным системам Использовали базы данных по токсин-антитоксин RASTA (http://genoweb.univ-rennes1.fr./duals/RASTA-Bacteria/) [Sevin E.W. et al., 2007] и TADB (http://bioinfo-mml.sjtu.edu.cn/TADB/) [Shao Y. et al., 2011], а также осуществляли поиск гомологов известных ТА белков грам-положительных микроорганизмов среди белков, синтезируемых штаммами L.rhamnosus, L.casei, L.fermentum, L.plantarum, L.rhamnosus и L.helveticus, используя алгоритм psi-blastp (http://blast.ncbi.nlm.nih.gov/Blast.cgi/). Руководствовались тем, ЧТО В подавляющем большинстве случаев гены ТА систем II типа организованы стандартно: гены токсина и антитоксина имеют величину до 630 пн; расположены на одной цепи ДНК на близком расстоянии друг от друга (до 70 пн) или перекрываются; ген антитоксина предшествует гену токсина [Sevin E.W. et al., 2007].

В ходе биоинформатического анализа было идентифицировано три различные ТА системы в штаммах *L.rhamnosus* (RelBE3_{Lth}, YefM-YoeB_{Lth} и один токсин relE1_{Lth} соло) (таблица 12); одна ТА система в штаммах *L.casei* (RelBE1_{Lcs}) и пять ТА систем в штаммах *L.helveticus* (RelBE1_{Lhv}, RelE2_{Lhv} – соло, RelBE3_{Lhv}, RelBB4_{Lhv}, RelBE5_{Lhv}) (таблица 13). В таблице 11 представлено распространение ТА систем II типа суперсемейства RelBE в лактобациллах. Как видно из таблицы 11, было обнаружено шесть ТА систем RelBE типа, два токсина RelE-соло и одна система, состоящая из 2х антитоксинов. В штаммах *L.fermentum* и *L.plantarum* ТА систем RelBE типа обнаружено не было. Во всех описанных ТА системах токсин принадлежал к различным семействам суперсемейства RelE.

Тип ТА системы Вид лактобацилл	Токсин+ антитоксин <i>RelBE</i>	Токсин <i>RelE</i>	Антитоксин + антитоксин <i>RelB</i>
L.helveticus	3	1	1
L.rhamnosus	2	1	-
L.casei	1	-	-
Итого	6	2	1

Для каждой TA системы разнообразие (полиморфизм) между штаммами проявляется в нуклеотидных и аминокислотных заменах. Идентичность нуклеотидных последовательностей внутри каждой TA системы была больше 99%, между системами – меньше 80% (см. раздел 3.3).

Штамм	RelE1 _{Lrh}	YefM-YoeB _{Lrh}	RelBE3 _{Lrh}
GG	LGG_00493*	-	LGG_00519
GG	LRHM_0477	-	LRHM_0502
LC705	Lc705_00482	Lc705_02727	Lc705_00508
		Lc705_02726	Lc705_00509
HN001	LRH_10927	LRH_08783	LRH_02752
		LRH_08778	
LMS2-1	HMPREF0539_2788	HMPREF0539_0586	HMPREF0539_2816
		HMPREF0539_0587	HMPREF0539_2817
ATCC 8530	LRHK_496	LRHK_2836	LRHK_524
		LRHK_2837	LRHK_525
ATCC 21052	HMPREF0541_00597	-	HMPREF0541_00056
			HMPREF0541_00057
R0011	R0011_08783	-	R0011_08888
			R0011_08893
CASL	+	+	+
LRHMDP2	LRHMDP2_168	-	LRHMDP2_197
			LRHMDP2_196
LRHMDP3	LRHMDP3_1769	-	LRHMDP3_1054
			LRHMDP3_1055

Таблица 12. Системы RelBE в штаммах *L.rhamnosus*.

* указано название локус-тага генов ТА систем.

Таблица 13. Системы RelBE в штаммах L.helveticus.

Штамм	RelBE1 _{Lhv}	RelE2 _{Lhv}	RelBE3 _{Lhv}	RelBB4 _{Lhv}	RelBE5 _{Lhv}
H10	LBHH_1066*	LBHH_1052	LBHH_1992	LBHH_1826	LBHH_0530
	LBHH_1065		LBHH_2056	LBHH_1827	LBHH_0531
DCP4571	lhv_1127	lhv_2503	локус не	lhv_1847	lhv_1631
	lhv_2502		выделен	локус не	lhv_1630
			lhv_2907	выделен	
R0052	R0052_06280	R0052_06265	R0052_11690	-	R0052_03220
	R0052_06275		R0052_11695	R0052_10515	R0052_03225
MTCC5463	AAULH_06406	AAULH_06421	AAULH_11536	AAULH_10512	AAULH_09378
	AAULH_06411		AAULH_11541	AAULH_10507	AAULH_09373

* указано название локус-тага генов ТА систем.

На рисунке 9 представлена структура модулей идентифицированных ТА систем II типа суперсемейства RelBE в лактобациллах.

Рисунок 9 – Структура модулей идентифицированных ТА систем A) RelE1_{Lrh} – представлен соло, т.е. не имеет антитоксина. Белок принадлежит к RelEсуперсемейству.

- **B)** YefM-YoeB_{Lrh} белок токсина принадлежит к Txe-YoeB семейству, белок антитоксина к суперсемейству Phd-YefM. Гены антитоксина и токсина перекрываются на 8 пн.
 - C) RelBE3_{Lrh} токсин относится к семейству RelE, антитоксин к семейству RelB. Гены антитоксина и токсина перекрываются на 17 пн.

D) RelBE1_{Lcs} – токсин относится к семейству RelE/StbE, антитоксин – к суперсемейству RelB. Гены антитоксина и токсина не перекрываются, а находятся на расстоянии 62 нк друг от друга.

E) RelBE1_{Lhv} – в данной системе ген токсина относится к семейству YafQ-RelE/StbE, а ген антитоксина к семейству Phd_YefM. Гены следуют друг за другом.

- **F) RelE2**_{Lhv} представлен соло, т.е. не имеет антитоксина. Данный ген относится к семейству Txe_YoeB.
- G) RelBE3_{Lhv} в данной системе ген токсина относится к семейству Txe_YoeB, а ген антитоксина к семейству Phd_YefM. Гены антитоксина и токсина перекрываются на 14 пн.
- **H) RelBB4**_{Lhv} данная система уникальна, так как она состоит из двух генов антитоксина, которые относятся к суперсемейству RelB. Гены следуют друг за другом.
- I) **RelBE5**_{Lhv} в данной системе ген антитоксина к суперсемейству RelB, а ген токсина к семейству XRE family transcriptional regulator. Гены антитоксина и токсина не перекрываются, а находятся на расстоянии 18 пн друг от друга.

72
3.3 Изучение полиморфизма генов суперсемейства RelBE

В охарактеризованной коллекции штаммов лаборатории генетики микрооргинизмов ИОГен РАН мы определяли наличие и полиморфизм идентифицированных ТА систем в 17 штаммах *L. rhamnosus*, в 8 штаммах *L. casei*, в 4 штаммах *L. helveticus* (см. материалы и методы). Праймеры для обнаружения всех ТА систем, найденных биоинформатическим путем, конструировались по консервативным фланговым районам соответствующих генов (см. материалы и методы таблица 7). С праймерами на сооветствующий ген ставилась ПЦР, выделялся и секвенировался ПЦР-продукт. Сравнительный анализ нуклеотидных последовательностей проводили с использованием программы BLAST (http://www.ncbi.nlm.nih.gov/blast), с помощью которой определяли количество нуклеотидных и аминокислотных замен (см. материалы и методы). Полиморфизм генов и белков ТА систем был определен также для секвенированных штаммов лактобацилл из GenBank (http://www.ncbi.nlm.nih.gov/genbank/). Критерием геномного полиморфизма являлось наличие или отсутствие генов в конкретных геномах, критерием генного полиморфизма – изменения в нуклеотидной последовательности генов.

3.3.1 Изучение полиморфизма генов суперсемейства RelBE в штаммах L.rhamnosus

Все три идентифицированных TA системы *L.rhamnosus* (**RelE1**_{Lrh}, **YefM-YoeB**_{Lrh}, **RelBE3**_{Lrh}) были обнаружены в геномах российских штаммов *L.rhamnosus*, однако штаммы демонстрировали значительный генный и геномный полиморфизм.

Ген токсина *relE1_{Lrh}* имеется у всех исследованных штаммов *L.rhamnosus* – как из GenBank, так и из лабораторной коллекции. Он представлен соло, т.е. не имеет антитоксина. Сравнение нуклеотидных и аминокислотных последовательностей представлено в таблице 14.

Таблица 14. Сравнение нуклеотидных последовательностей гена И аминокислотных последовательностей белка токсина RelE1_{Lth} с геном и белком штамма L. rhamnosus LMS2-1 (число ΗК AK). Жирным шрифтом отмечены штаммы GenBank замен И ИЗ [http://www.ncbi.nlm.nih.gov/genbank/].

N₂	Штаммы	мы Ток			
	L.rhamnosus	НК гена (273)	АК белка (90)		
1	Lc705, ATCC8530, CASL, 40ст, 45д, 51гн, 2гн, 80ст	0	0		
2	R0011, ATCC21052, HN001	10	0		
3	GG*, 26ск, 61ск	7	0		
4	72зв, 7дст, 50зв	9	0		
5	22гн, К32, 38к	14	4 A36T V74I D77G I79V		

Для трех штаммов из лабораторной коллекции при разделении продуктов ПЦР, полученных с праймерами для гена *relE1*_{Lth} (см. материалы и методы, таблица 7), в электрофорезе были получены фрагменты, значительно превышавшие по молекулярной массе искомые фрагменты ДНК с ТА локусами (рисунок 10).

Рисунок 10 – Разделение в электрофорезе продуктов ПЦР с праймерами для гена *relE1*_{Lrh} и ДНК штаммов *L.rhamnosus* в качестве матрицы.

Использована ДНК штаммов *L. rhamnosus*: 1 - 421-2; 2 - 7дст; 3 - 24дст; 4 - К32; 5 - 38к; 6 - 503в; 7 - 723в; 8 - 40ст; 9 - 80ст;

10 – 2гн; 11 – 22гн; 12 – 51гн; 13 – 45д; 14 – 26ск; 15 – 61ск; 16 – маркер мол.веса.

При секвенировании и blastn анализе таких фрагментов ДНК было обнаружено, что они содержали внутри гена relE1 IS-элементы группы IS3. Обнаруженные IS элементы состоят из 1469 пн (штамм 421-2) и 1471 пн (штаммы 24дст, 50зв – полностью идентичны); идентичность этих двух IS-элементов составляет 95%. Встраивание произошло у всех трех штаммов после 68 нуклеотида гена $relE1_{Lrh}$. Последовательность IS-элемента ограничена 5-членными прямыми повторами и содержит одну пару 6-членных инвертированных повторов. Строение IS элемента представлено на рисунке 11. Как и другие мобильные элементы IS3 семейства [Siguier P. et al. 2006], обнаруженные IS-элементы несут две ORF с 268-ью и 178-ью аминокислотными остатками, соответствующие транспозазам IS3/IS911 и IS150/IS3. Данная IS3 последовательность гомологична IS, идентифицированным в секвенированных штаммах лактобацилл. IS-50зв имеет 99% идентичности нуклеотидного состава с IS3 из штамма R0011, a IS-421-2 на 99% идентична IS3 из штамма *L.rhamnosus* GG. Данная IS3 многократно встречается в геномах лактобацилл. Так, в штамме GG (NC_013198.1) она встречается 4 раза (1653411 – 1651941; 2520138 – 2521608; 2761567- 2763037; 2934722- 2933252), что соответствует ORF LGG_01622 и LGG_01623; LGG_02445 и LGG_2446; LGG_02697 и LGG_02698; LGG_02870 и LGG_02871.

Рисунок 11 – Строение IS элемента, обнаруженного в гене токсине *relE1*_{Lrh}. IR – инвертированные повторы, DR – прямые повторы. Стрелками изображены ORF, соответствующие гену токсина и генам транспозаз.

18 штаммов, не содержащих IS-элемента, имеют одинаковые по величине гены и белки и отличаются друг от друга заменами нуклеотидов в гене, 3 штамма отличаются от других заменами аминокислот в белке. Гомологичные белки (50-79% идентичности) есть у многих лактобацилл (*L.zeae, L.casei, L.buchneri, L.kisonensis, L.brevis, L.parafarraginis* и др.). Белки с идентичностью меньше 50% есть у микроорганизмов других родов (*Fructobacillus, Leptotrichia, Selenomonas, Haemophilus, Helicobacter* и др.).

Система **YefM-YoeB**_{Lrh} обнаружена у части штаммов из GenBank и лабораторной коллекции, всего в 12 штаммах. Система отличается высоким консерватизмом – из 12 штаммов у 11 гены токсина и антитоксина идентичны; у одного штамма есть одна нуклеотидная замена в гене токсина, приводящая к аминокислотной замене (N•62: Asp \rightarrow Glu). Гомологи белков токсина обнаруживаются преимущественно среди отличных от лактобацилл родов микроорганизмов (*Streptococcus, Enterococcus, Acetobacterium, Bifidobacterium* и др.).

Наличие функционально активной системы **RelB3-RelE3**_{Lrh} можно предположить только у двух из 8-ми секвенированных штаммов *L.rhamnosus* из GenBank (R0011 и ATCC21052) и 9 лабораторных штаммов, всего у 11 штаммов. У остальных штаммов (6 из GenBank и 6 из лабораторной коллекции) данная TA система также имеется, однако в обоих генах есть множественные отличия в нуклеотидной последовательности по сравнению со штаммами R0011 и ATCC210520 (замены нуклеотидов, сдвиги рамки считывания, делеции). Эти 12 штаммов разделяются на две группы; у штаммов одной группы можно предположить наличие гипотетических белков антитоксина и претерпевшего делецию токсина (61AA вместо 95AA); у штаммов другой группы можно предположить наличие только белка антитоксина (таблица 15). Белки, родственные белкам данной TA системы, обнаруживаются только у одного вида лактобацилл – *L.rhamnosus*. Отдаленные гомологи белков (менее 46% идентичности) есть у различных микроорганизмов других родов (*Streptococcus, Gardnerella* и др.). **Таблица 15.** Сравнение нуклеотидных последовательностей генов и аминокислотных последовательностей белков TA системы RelBE3_{Lth} с генами и белками штамма *L. rhamnosus* R0011 (число замен HK и AK). Жирным шрифтом отмечены штаммы из GenBank [http://www.ncbi.nlm.nih.gov/genbank/].

N⁰	Штамм	Анти	гоксин	Токсин		
		НК гена (282) АК белка (93)		НК гена (288)	АК белка (95)	
1-1	АТСС21052*, 40ст,	0	0	0	0	
	45д, 72зв					
1-2	7дст, 24дст	1	1	0	0	
			V80F			
1-3	22гн, К32, 38к	1	0	2	1	
					R62H	
2	Lc705, ATCC8530,	43	12	4 (из 186)	2 (из 61)	
	CASL, LMS2-1, 2гн,					
	51гн, 80ст					
3	GG, HN001, 503B,	47 (из 273)	24 (из 90)	-	-	
	421-2, 26ск, 61ск					

Суммарное распределение ТА систем у *L. rhamnosus* представлено в таблице 16. Нуклеотидные последовательности идентифицированных ТА систем приведены в приложение В.

Таблица 16. Распределение генов ТА систем в штаммах *L.rhamnosus*. Жирным шрифтом выделены штаммы из GenBank [http://www.ncbi.nlm.nih.gov/genbank/].

№ группы	Штаммы L.rhamnosus	Гены токсинов	Гены антитоксинов
1	GG,	relE1	
	421-1; 26ск; 61ск		relB3
2	LMS2-1,	relE1	
	24дст	relE3	relB3
		yoeB	yefM
3	ATCC 21052; R0011;	relE1	relB3
	72зв; 22гн; К32; 38к; 45д	relE3	
4	LC705, ATCC8530, CASL;	relE1	
	40ст; 80ст; 2гн; 51гн	relE3	relB3
		yoeB	yefM
5	HN001;	relE1	
	7дст; 50за		relB3
		yoeB	yefM

3.3.2 Изучение полиморфизма генов суперсемейства ReIBE в штаммах L.casei

Для *L.casei* референсным геномом был выбран штамм BL23, с которым сравнивались последовательности TA систем как из лабораторной коллекции, так и из GenBank.

ТА система **RelBE1**_{Lcs} имеется у всех штаммов *L.casei* как из GenBank (4 штамма) так и в лабораторной коллекции (8 штаммов). У 8 штаммов из 12 гены токсина и антитоксина идентичны, у трех штаммов (гКНМ577, 20011, гКНМ23) ген антитоксин идентичен по аминокислотной последовательности, а в гене токсина имеются замены аминокислот (таблица 17). У штамма K_3III_{24} есть 1 замена аминокислоты в гене антитоксина и три замены в гене токсина, как и у штаммов 20011, гКНМ23.

Таблица 17. Сравнение нуклеотидных последовательностей генов и аминокислотных последовательностей белков TA системы RelBE1_{Lcs} с генами и белками штамма *L. casei* BL23 (число замен HK и AK). Жирным шрифтом отмечены штаммы из GenBank [http://www.ncbi.nlm.nih.gov/genbank/].

N⁰	Штамм	Антит	оксин	Токсин		
		НК гена (270)	АК белка (89)	НК гена (234)	АК белка (78)	
1	BD-II, LC2W, W56, 17к, 42ст, 48ст, 51ст,	0	0	0	0	
2	гКНМ577	1	0	10	2 D2N K57E	
3	20011, гКНМ23	3	0	10	3 H42V K57E G77V	
4	К ₃ Ш ₂₄	4	1 E72Q	10	3 H42V K57E G77V	

3.3.3 Изучение полиморфизма генов суперсемейства RelBE в штаммах L.helveticus

Пять идентифицированных TA систем были обнаружены в геномах российских штаммов *L.helveticus* (**RelBE1**_{Lhv}, **RelE2**_{Lhv}, **RelBE3**_{Lhv}, **RelBE4**_{Lhv}, **RelBE5**_{Lhv}), однако штаммы демонстрировали значительный генный и геномный полиморфизм.

ТА система **RelBE1**_{Lhv}. В данной системе белок токсина относится к семейству YafQ-RelE/StbE,а ген антитоксина к семейству Phd_YefM. Данная система обнаружена у всех штаммов *L.helveticus* – как из лабораторной коллекции, так и из GenBank. Данные о заменах представлены в таблице 18.

Таблица 18. Сравнение нуклеотидных последовательностей генов и аминокислотных последовательностей белков TA системы **RelBE1**_{Lhv} с генами и белками штамма *L. helveticus* DCP4571 (число замен HK и AK). Жирным шрифтом отмечены штаммы из GenBank [http://www.ncbi.nlm.nih.gov/genbank/].

N⁰	Штамм	Антит	оксин	To	оксин
		НК гена (279)	АК белка (92)	НК гена (348)	АК белка (115)
1	MTCC5463, NNIE	0	0	1	1 D58G
2	H10	0	0	на 3 нк ген больше 2	На 1 ак белок больше 2 V32A D58G +№103: L
3	R0052	0	0	3	3 V17A D43G G83S
4	100аш, Er315, NK1	1	1 E85D	3	3 V32A D58G P73L

Ген токсина $relE2_{Lhv}$. Данный ген относится к семейству Txe_YoeB. Он имеется у всех исследованных штаммов *L.helveticus* – как из GenBank, так и из лабораторной коллекции и представлен соло, т.е. не имеет антитоксина (таблица 19).

Таблица 19. Сравнение нуклеотидных последовательностей генов и аминокислотных последовательностей белков токсина RelE2_{Lhv} с генами и белками штамма *L. helveticus* DCP4571 (число замен НК и АК). Жирным шрифтом отмечены штаммы из GenBank [http://www.ncbi.nlm.nih.gov/genbank/].

N⁰	Штамм	Токсин				
		НК гена (300)	АК белка (99)			
1	NNIE	1	0			
2	MTCC5463	2	0			
3	H10	2	1			
			E32K			
4	100аш,	2	2			
	Er315/402, NK1		W84C			
			W85G			
5	R0052	4	2			
			P55A			
			W84C			

ТА система **RelBE3**_{Lhv}. В данной системе белок токсина относится к семейству Txe_YoeB, а ген антитоксина к семейству Phd_YefM. Данная система имеется у всех штаммов *L.helveticus* – как из лабораторной коллекции, так и из GenBank. Аминокислотная последовательность гена антитоксина была не вариабельна. В гене токсина всех штаммов из лабораторной коллекции выявлено две нуклеотидных замены, одна из которых приводит к аминокислотной замене (таблица 20).

Таблица 20. Сравнение нуклеотидных последовательностей генов и аминокислотных последовательностей белков TA системы **RelBE3**_{Lhv} с генами и белками штамма *L. helveticus* H10 (число замен HK и AK). Жирным шрифтом отмечены штаммы из GenBank [http://www.ncbi.nlm.nih.gov/genbank/].

N⁰	Штамм	Анти	гоксин	Токсин			
		НК гена (309)	АК белка (102)	НК гена (270)	АК белка (89)		
1	100аш,	0	0	2	1		
	Er315/402,				I69M		
	NK1, NNIE						
2	R0052	1	0	1	1		
					I69M		
3	MTCC5463	2	1	2	1		
			T4P		I69M		
			E76K				

Система **RelBB4**_{Lhv}. Данная система отличается тем, что она состоит из двух генов, кодирующих белки, относящиеся к семейству RelB, т.е. антитоксинов. Данная система имеется в четырех штаммах из GenBank (H10, DCP4571, DSM 20075 и MTCC 5463) и во всех штаммах из лабораторной коллекции. В штаммах DPC4571, 100ash, Er315/402, NK1, NNIE в первом гене (токсина ?) было 2 нуклеотидные замены, приводящие к 2-м аминокислотным заменам (N \circ 55: P – S N \circ 71: A – P). В одном штамме из GenBank присутствовал только один ген – «антитоксина».

ТА система **RelBE5**_{Lhv}. Данная предполагаемая ТА система также необычна, так как она состоит из гена антитоксина, белок которого относится к семейству RelB, и расположенного рядом предполагаемого гена токсина, длина которого составляет 882 пн. Данная система имеется у всех штаммов *L. helveticus* – как из лабораторной коллекции, так и из GenBank. Аминокислотная последовательность гена антитоксина у штаммов из коллекции не вариабельна, а в гене токсина выявлена одна нуклеотидная замена, которая приводит к аминокислотной замене (таблица 21).

Таблица 21. Сравнение нуклеотидных последовательностей генов и аминокислотных последовательностей белков TA системы RelBE5_{Lhv} с генами и белками штамма *L. helveticus* DPC4571 (число замен HK и AK). Жирным шрифтом отмечены штаммы из GenBank [http://www.ncbi.nlm.nih.gov/genbank/].

N⁰	Штаммы	Анти	токсин	Токсин			
		НК гена (315)	АК белка (104)	НК гена (882)	АК белка (293)		
1	H10, R0052,	0	0	1	1		
	100ash, Er315/402, NK1, NNIE				D152G		
2	MTCC5463	1	1	3	2 D152C		
			L8/1		A279T		

Суммарное распределение ТА систем у *L. helveticus* представлено в таблице 22. Нуклеотидные последовательности идентифицированных ТА систем приведены в приложение В.

№ группы	Штамм	Гены-токсинов	Гены-антитоксинов
1		relE1	relB1
		relE2	
	DPC 4571		relB3
			relB4-1
		relE5	relB5
2		relE1	relB1
		relE2	
	H10, MTCC5463, 100ash,	relE3	relB3
	NK1, NNIE, Er315/402		relB4-1
			relB4-2
		relE5	relB5
3		relE1	relB1
		relE2	
	R0052	relE3	relB3
			relB4-2
		relE5	relB5

Таблица 22. Распределение генов ТА систем в штаммах *L. helveticus*. Жирным шрифтом выделены штаммы из GenBank [http://www.ncbi.nlm.nih.gov/genbank/].

Все идентифицированные нами ТА системы различны. Внутри каждой ТА системы идентичность нуклеотидной последовательности генов составляет более 99% (кроме тех случаев, где наблюдается многочисленные делеции и система «разваливается» - как у RelBE3_{L.rh}). Идентичность аминокислотной последовательности белков разных ТА систем как внутри одного вида, так и между разными видами, менее 30%.

Как было отмечено ранее, данные TA системы имеют гомологию с TA системами других видов. Гомологичные белки внутри рода *Lactobacillus* идентичны на $\leq 84\%$, но встречаются и такие белки, которые гомологичны на 95-98% в пределах рода. Гомология с другими видами грамположительных бактерий составляет $\leq 75\%$. При сравнении TA систем с грам-отрицательными бактериями (на примере *E.coli*), их гомология составила $\leq 51\%$. Более подробные результаты по гомологии белков каждой из описанных нами TA систем с TA системами других бактерий представлена в таблице 23 и на рисунках 12, 13, 14.

Таблица 23. Степень сходства белков идентифицированных нами токсинов и антитоксинов суперсемейства RelBE *L.rhamnosus, L.helveticus, L.casei* с соответствующими белками представителей других видов лактобацилл, грам-положительных бактерий и *E.coli*.

Белок	Максимальный % идентичности с белками					
(токсин /антитоксин) [*]	Бактерий других видов дактобаница	Грам-положительных бактерий, отличных от пактобаница	E.coli			
D-1E1			< 200/			
RelEI _{Lrh}	$\leq 79\%$ WD 003563382	$\leq 42\%$ WP 014122008	$\leq 30\%$			
PolB3	< 13%	< 11%	< 10%			
KeiDJ _{Lrh}	ERI 66000	$= \frac{170}{100}$ WP 034546705	$\leq 40\%$ W/P 028085/183			
RelF3.	< 12%	< 12%	< 38%			
KCILJ _{Lrh}	~ 42.0 WP 041093193	= 42.% WP 002291480	<u>~</u> 38% WP 001570851			
VefM	< 84%	< 61%	< 33%			
I CHVILm	WP 016381182	WP 012961966	ESA95107			
YoeB _{Lth}	<72%	< 66%	<49%			
	WP 016381181	WP 029497732	WP 038355928			
RelB1 _{Les}						
	WP_010580355	WP_010778844	WP_000451332			
RelE1 _{Lcs}	≤91% (70%)	≤ 55% (45%)	≤46% (38%)			
	WP_010580356	WP_010746334	WP_012000916			
RelB1 _{Lhv}	≤ 91%	≤75%	-			
	WP_035175178	WP_012660356				
$RelE1_{Lhv}$	$\leq 74\%$	$\leq 60\%$	\leq 24%			
	WP_003548064	WP_002827220	WP_000535377			
RelE2 _{Lhv}	$\leq 51\%$	\leq 37%	-			
	WP_007125692	WP_028790735				
RelB3 _{Lhv}	\leq 95%	\leq 42%	\leq 27%			
	EEU18998	ESL04426	WP_024176566			
RelE3 _{Lhv}	$\leq 92\%$	\leq 52%	\leq 51%			
	WP_025005991	WP_037371013	WP_023157375			
$RelB1_4_{Lhv}$	$\leq 41\%$	$\leq 39\%$	$\leq 33\%$			
	WP_034991769	WP_042493705	KEL78909			
RelB2_4 _{Lhv}	$\leq 36\%$	$\leq 30\%$	$\leq 28\%$			
D 1D5	WP_003627337	WP_009608577	WP_032170727			
ReIB5 _{Lhv}	$\leq 98\%$	$\leq 46\%$	$\leq 30\%$			
D.1E5	WP_005718136	WP_024859130	wP_000451332			
$\text{KelES}_{\text{Lhv}}$	$\leq 98\%$	$\leq 61\%$	$\leq 28\%$			
	WP_005/1813/	WP_002833662	WP_000904506			

* Анализируемые в таблице белки описаны в разделе 2, название бактерий представлены на рисунке 12, 13, 14; номера белковых последовательностей предствалены в таблице.

Рисунок 12 – Гомология белков ТА систем из штаммов *L.rhamnosus* с ТА системами других бектерий. Выбраны гомологи трех групп: бактерии рода *Lactobacillus*, грамположительные бактерии, грамотрицательные бактерии (на примере *E.coli*) с максимальным сходством.

Рисунок 13 – Гомология белков ТА систем из штаммов *L.casei* с ТА системами других бектерий. Выбраны гомологи трех групп: бактерии рода *Lactobacillus*, грамположительные бактерии, грамотрицательные бактерии (на примере *E.coli*) с максимальным сходством.

83

Рисунок 14 – Гомология белков ТА систем из штаммов *L.helveticus* с ТА системами других бектерий. Выбраны гомологи трех групп: бактерии рода *Lactobacillus*, грамположительные бактерии, грамотрицательные бактерии (на примере *E.coli*) с максимальным сходством.

Из представленных рисунков видно, что ТА системы в разной степени гомологичны с ТА системами других видов.

Таким образом, на третьем этапе работы при анализе нуклеотидных последовательностей секвенированных геномов лактобацилл из GenBank мы обнаружили три различные TA системы суперсемейства RelBE в штаммах *L.rhamnosus*, одну TA система в штаммах *L.casei* и пять TA систем в штаммах *L.helveticus*. Все эти TA системы были обнаружены и в геномах штаммов из лабораторной коллекции. Из 9 обнаруженных TA систем:

6 содержали гены/белки антитоксина и токсина – YefM-YoeB_{Lrh}, RelB3-RelE3_{Lrh}, RelBE1_{Lcs},
RelBE1_{Lhv}, RelBE3_{Lhv}, RelBE5_{Lhv};

- 2 состояли только из гена/белка токсина «соло» RelE1_{Lrh}, RelE2_{Lhv};
- одна состояла из двух генов/белков, аннотируемых как антитоксины RelBB4_{Lhv}.

Токсины обнаруженных ТА систем (RelE, YoeB) принадлежат к RelE суперсемейству. Антитоксины (RelB, YefM) принадлежат RelB суперсемейству. Один белок – токсин RelBE5 системы – принадлежал к мембранным белкам. Гены токсинов и антитоксинов одной ТА системы у штаммов одного вида отличаются единичными заменами нуклеотидов и имеют более 99% идентичности. Белки токсинов и антитоксинов разных ТА систем – как одного вида лактобацилл, так и разных видов - значительно отличаются друг от друга и имеют 30% идентичности (как исключение, два белка - RelBE1_{Lhv} и YoeB_{Lrh} – имели 43% идентичности). Сочетание токсинов и антитоксинов и антитоксинов и антитоксинов и сочетаний токсинов не во всех случаях являются «каноническими», это подтверждает вариабельность сочетаний токсинов и антитоксинов различных семейств при образовании ТА систем.

Как видно из таблицы 23, белки токсинов и антитоксинов лактобацилл больше сходны с таковыми других лактобацилл и грам-положительных бактерий, чем с белками *E.coli* и других грам-отрицательных микроорганизмов. Однако некоторые белки (RelB3_{Lth}, RelE3_{Lth}, RelB1_{Lhv}, RelB2_{Lhv}) имеют одинаковый небольшой процент идентичности с белками всех групп сравнения и свойственны только определенному виду лактобацилл – *L.rhamnosus* или *L.helveticus*.

ТА системы не являются обязательными элементами бактериального генома. При анализе ТА систем в секвенированных геномах бактерий неоднократно встречаются ТА системы с мобильным генетическим элементом либо непосредственно с ним связанные, либо расположены рядом. Ряд авторов относит сами ТА системы к мобильным генетическим элементам [Makarova K. et al., 2009]. Наши данные также подтверждают связь ТА систем с мобильными элементами. Мы обнаружили в гене *relE1*_{Lrh} для трех штаммов из лабораторной коллекции мобильный генетический элемент IS3 семейства, который располагается внутри гена.

Как уже отмечалось, ТА системы состоят из гена токсина и антитоксина, которые расположены рядом и образуют оперон. Нами были обнаружены гены токсинов соло ($relEl_{Lrh}$ и $relE2_{Lhv}$), т.е. для данных генов ни в одном из штаммов *L.rhamnosus* и *L.helveticus* не удалось идентифицировать ген, который можно было бы считать геном антитоксина. Обнаруженные нами

единичные гены токсинов присутствовали в геноме всех проверенных штаммов *L.rhamnosus* и *L.helveticus*. Подобные одиночные гены токсинов и антитоксинов отмечены в различных геномах [Makarova K.S. et. al., 2009]. Возможно, данные токсины имеют свои специфические антитоксины, однако соответствующие гены расположены в другом месте хромосомы. Возможно, и одиночные гены токсинов могут участвовать, наряду с полноценными ТА системами, в регуляции клеточных процессов. До настоящего времени это было показано для одного уникального токсина Мухососсиs [Inouye S. et al., 2008].

Нами была найдена необычная система RelBB4_{Lhv}, которая состоит из двух генов, взаимное расположение и величина которых соответствуют таковым TA систем, однако оба белка аннотируются как антитоксины. Данная TA система присутствует практически во всех штаммах *L.helveticus*, как из лабораторной коллекции, так и из GenBank. Возможно, один из белков этой системы является токсином с новыми, еще не описанными, механизмом действия и каталитическим доменом. При поиске новых TA систем в штаммах *L.helveticus* мы также обнаружили систему, оба белка которой аннотировались как антитоксины (R0052_10560-R0052_10565); для этой системы была показана активность одного из белков в клетках *E.coli* (см. раздел 3.6).

Обнаруженные нами ТА системы достаточно стабильны, присутствуют практически во всех геномах и отличаются друг от друга только отдельными нуклеотидными или аминокислотными заменами. Только одна из обнаруженных нами ТА систем – RelBlE3_{Lth} – деградирует. Ген антитоксина $relB3_{Lrh}$ в ряде штаммов *L.rhamnosus* (GG, HN001) представлен соло; в случае данной ТА системы это является результатом потери гена токсина, который в других штаммах *L.rhamnosus* (ATCC21052, R0011, Lc705, ATCC8530, CASL, LMS2-1) обнаруживается.

Штаммы лактобацилл демонстрируют полиморфизм ТА систем, как геномный, так и генный. Генный полиморфизм штаммов может приводить к аминокислотным заменам и, в отдельных случаях, к потере активности белков (как у гена токсина yoeBL_{th} из штамма *L.rhamnosus* 40st – см. раздел 3.4.2). Единичные нуклеотидные замены, возможно, могут приводить и к изменению регуляции активности генов и белков, влияя на эффективность транскрипции и трансляции. Штаммы имеют свой специфический набор генов токсинов и антитоксинов, что позволяет использовать полиморфизм ТА систем для характеристики отдельных штаммов (таблица 16 и 22, приложение В). По наличию или отсутствию ТА систем все штаммы *L.rhamnosus* можно разделить на 5 групп, а штаммы *L. helveticus* – на 3 группы, каждая из которых отличается комбинацией систем ТА. Полиморфизм ТА систем использован нами для штаммовой идентификации лактобацилл (см. раздел 3.7). Нами была разработана система

праймеров для видовой и штаммовой идентификацией лактобацилл на основе TA систем – как RelBE, так и MazEF суперсемейств; получен патент на данное изобретение (патент № 2526576).

Исследованные штаммы лактобацилл выделены из различных отделов микробиоты человека. Число исследованных штаммов невелико для окончательных суждений, однако, данные таблицы 4 позволяют отметить, что группу 1 с минимальным количеством ТА систем составляют только штаммы *L.rhamnosus*, выделенные из ЖКТ; штаммы, выделенные из ротовой полости, составляют две обособленные группы (2 и 5); штаммы вагинального происхождения входят в те же группы, что и штаммы из ЖКТ (3 и 4). Эти данные позволяют предположить некоторую обособленность штаммов, выделенных из желудочно-кишечного тракта и ротовой полости.

Штаммы *L. helveticus* из GenBank (DPC 4571, H10, R0052) выделены из продуктов питания, а штамм MTCC5463 – выделен из вагинальной полости. Штаммы из лабораторной коллекции, выделенные из желудочно-кишечного тракта, сгруппированы в одну группу со штаммом MTCC5463 (таблица 22), что также позволяют предположить некоторую обособленность штаммов, выделенных из организма человека.

3.4 Изучение функционирования ТА систем лактобацилл в клетках E.coli

Чтобы выяснить, проявляют ли продукты идентифицированных генов токсинов в штаммах *L.rhamnosus, L.casei* и *L.helveticus* активность именно как токсины, мы определили влияние экспрессии данных генов на рост клеток на стандартной модели *E.coli*. Гены были клонированы в в экспрессионные вектора pET-32a или pACYCDuet-1, содержащих IPTG – индуцируемый промотор (см. материалы и методы, таблица 6). Клонировали гены без собственных регуляторных элементов. Гибридные плазмиды с клонированными генами токсинов переносили трансформацией в клетки *E.coli* BL21(DE3), в которых промотор был активен в присутствии IPTG.

После обнаружения активности генов токсинов необходимо было выяснить, являются ли активными белки антитоксинов у данных ТА систем, то есть способен ли антитоксин подавлять токсин в клетках *E.coli*. Для этого мы клонировали ген токсина на плазмиде pACYCDuet-1, а ген антитоксина - на плазмиде pET-32a, и совмещали их в клетках *E.coli* BL21(DE3).

Характер роста штаммов определяли на твердой и в жидкой средах, используя параллельно среды с IPTG, и без него. На твердой среде раскапывали разведения культур штаммов *E.coli* BL21(DE3), содержащих плазмиды с клонированными генами токсинов ($relE1_{Lrh}$, $yoeB_{Lrh}$, $relE1_{Lhv}$, $relE2_{Lhv}$ и $relE3_{Lhv}$). В жидкой среде определяли характер роста штаммов, измеряя оптическую плотность культур OD600 (см. материалы и методы).

3.4.1 Клонирование и экспрессия в клетках E.coli TA генов L.rhamnosus

ТА системы в различных штаммах *L.rhamnosus* отличались нуклеотидной последовательностью генов. Для каждой из трех ТА систем был выбран наиболее часто встречающийся вариант гена токсина. Для всех генов токсинов трех ТА систем были получены трансформанты *E.coli* BL21(DE3). Таким образом, были клонированы ген $relE_{Lrh}$ из штамма 2гн (плазмида p32 $relE1_{Lrh}$ 2), ген *yoeB*_{Lrh} из штамма 24дст и 40 (плазмиды p32 $yoeB_{Lrh}$ 24 и p32 $yoeB_{Lrh}$ 40) и ген $relE3_{Lrh}$ из штамма 45д (плазмида p32 $relE3_{Lrh}$ 45).

Для штаммов *E.coli* BL21(DE3), содержащих плазмиды $p32yoeB_{Lrh}_{24}$ и $p32relE3_{Lrh}_{45}$ с клонированными генами токсинов $yoeB_{Lrh}$ и $relE3_{Lrh}$, эффективность роста на чашках с IPTG была значительно ниже, чем на чашке без индуктора (рисунок 15). Таким образом, индукция данных белков в значительной степени подавляла рост клеток *E.coli*.

Для штамма *E.coli* BL21(DE3) $p32relE1_{Lrh}^2$ с клонированным геном $relE1_{Lrh}$ эффективность роста на чашках с IPTG была незначительно меньше, чем на чашках без индуктора (рисунок 15). При рассеве разведений культуры данного штамма на чашки с IPTG и без него число колоний на чашках было одинаковым, однако величина колоний на чашках с IPTG была значительно меньше (рисунок 16). Вероятно, действие токсина RelE1_{Lrh} проявляется таким необычным образом.

Ген *уоеВ* из штамма *L.rhamnosus* 40ст имеет одну нуклеотидную замену, приводящую к аминокислотной замене в белке (Asp62 \rightarrow Glu62), по сравнению с геном из штамма 24дст. Экспрессия белка YoeB_{Lrh40} не влияла на рост клеток *E.coli* (рисунок 15). Вероятно, белок YoeB_{Lrh24} является активным токсином, а мутация Asp62 \rightarrow Glu62 подавляет активность белка.

Рисунок 15 – Влияние экспрессии клонированных генов токсинов *L.rhamnosus* на рост штамма *E.coli* BL21(D3) на твердой среде, содержащей плазмиды:

1 – контроль p32a; 2 - p32*yoeB*_{Lrh}24; 3 - p32*yoeB*_{Lrh}40; 4 - p32*relE*1_{Lrh}2; 5 - p32*relE*3_{Lrh}45.

Рисунок 16 – Влияние экспрессии клонированного гена токсина *L.rhamnosus* на рост штамма *E.coli* BL21(D3) при рассеве на твердой среде культуры, содержащей плазмиду p32*relE1*_{Lrh}2. Разведение 10⁻³.

Штаммы *E.coli*, содержащие клонированный ген токсина *yoeB_{Lrh}* (как на векторе pET-32a, так и на векторе pACYCDuet-1), резко замедляли рост после добавления индуктора промоторной

активности IPTG. Введение в клетки *E.coli*, несущие плазмиду $pACyoeB_{Lrh}_{24}$ с клонированным геном токсина *yoeB*_{Lrh}, плазмиды $p32yefM_{Lrh}_{24}$ с геном антитоксина *yefM*_{Lrh} делало характер роста штамма неизменным в присутствии IPTG и без него (рисунок 17). Следовательно, антитоксин YefM_{Lrh24} подавляет активность токсина YoeB_{Lrh24} в клетках *E.coli*, т.е., также как и токсин, проявляет функциональную активность.

Рисунок 17 – Характер роста штаммов *E.coli* BL21(DE3), содержащих плазмиды с клонированными генами токсина *yoeB*_{*Lrh24*} и антитоксина *yefM*_{*Lrh24*}, в жидкой среде LB. К части культур в указанный на рисунке момент времени был добавлен IPTG.

3.4.2 Клонирование и экспрессия в клетках E.coli TA генов L. helveticus

В разделе 3.4.1 было установлено, что даже одна аминокислотная замена в белке токсине может полностью устранять токсический эффект. Поэтому для определения активности генов токсинов *L.helveticus* клонировали несколько вариантов белков токсинов, отличающихся отдельными нуклеотидными заменами. Были клонированы два варианта гена $relE1_{Lhv}$: из штамма NNIE (pAC $relE1_{Lhv}$ _NN) и из штамма NKI (pAC $relE1_{Lhv}$ _NK), отличаются тремя нуклеотидными заменами; два варианта гена $relE2_{Lhv}$: из штамма NNIE (pAC $relE2_{Lhv}$ _NN) и из штамма NKI (pAC $relE3_{Lhv}$ _NN). Аминокислотные и нуклеотидные замены в белках и генах описаны в разделе 3 и представлены в приложении В.

Нуклеотидные и соответствующие аминокислотные замены в генах $relE1_{Lhv}$, $relE2_{Lhv}$ и $relE3_{Lhv}$ не приводили к резкому изменению экспрессии гена токсина (рисунок 18), как в случае с геном токсинов *yoeB* из штамма *L.rhamnosus* 40ст. На рисунке 19 показано влияние экспрессии одного варианта клонированных генов для каждой ТА системы на твердой среде.

Рисунок 18 – Характер роста штаммов *E.coli*, содержащих плазмиды с клонированными генами токсинов и антитоксинов *L.rhamnosus*, в жидкой среде.

Рисунок 19 – Влияние экспрессии клонированных генов токсинов *L.helveticus* на рост на твердой среде штамма *E.coli* BL21(D3), содержащего плазмиды: 1 – контроль, вектор pACYCDuet-1; 2 – pAC*relE1_{Lhv}*_NN; 3 – pAC*relE2_{Lhv}*_NN; 4 – pAC*relE3_{Lhv}*_NN; 5 – pAC*relE5_{Lhv}*_NN.

Токсины RelE2_{*Lhv*}NK и RelE2_{*Lhv*}NN не влияют на рост клеток *E.coli*, как с IPTG, так и без IPTG. В то же время токсины RelE3_{*Lhv*}NK, RelE3_{*Lhv*}NN, RelE1_{*Lhv*}NN при добавлении индуктора дают значительное уменьшение скорости роста культуры, что, свидетельствует об активности соответствующих белков как токсинов.

Далее необходимо было выяснить, являются ли активными белки антитоксинов у ТА систем с функционально активными генами токсинов $relE1_{Lhv}$ и $relE3_{Lhv}$, то есть способен ли антитоксин подавлять деятельность токсина в клетках *E.coli*. Результаты представлены на рисунках 20 и 21.

Рисунок 20 – Характер роста штаммов *E.coli*, содержащих плазмиды с клонированными генами токсина и антитоксина RelBE1_{Lhv} системы, в жидкой среде.

Рисунок 21 – Характер роста штаммов *E.coli*, содержащих плазмиды с клонированными генами токсина и антитоксина RelBE3_{L.hv} системы, в жидкой среде.

Штаммы *E.coli*, содержащие клонированный ген токсина $relE3_{Lhv}$, резко замедляли рост после добавления индуктора. Введение в клетки *E.coli*, несущие плазмиду pAC $relE3_{Lhv}$ _NN с клонированным геном токсина $relE3_{Lhv}$, плазмиды p $32relB3_{Lhv}$ _NN с геном антитоксина $relB3_{Lhv}$ делало характер роста штамма неизменным в присутствии IPTG и без него (рисунок 21). Аналогичные результаты были получены для системы RelBE 1_{Lhv} (рисунок 20). Можно сделать вывод, что антитоксины RelB 1_{Lhv} и RelB 3_{Lhv} подавляют активность соответствующих токсинов RelE 1_{Lhv} и RelE 3_{Lhv} в клетках *E.coli*, т.е., также как и токсины, проявляет функциональную активность.

Стоит отметить, что клонированный ген токсина *relE1*_{Lhv}, частично замедляет рост клеток *E.coli* даже без IPTG (рисунок 20 (-IPTG)), т.е. его токсическое действие проявляется сильнее, чем для других клонированных генов токсинов.

Предполагаемый токсин RelE5 не вызывал изменения жизнеспособности клеток E.coli.

3.4.3 Клонирование и экспрессия в клетках E.coli гена токсина L. casei

Ген токсина $relE1_{Lcs}$ был клонирован в клетках *E.coli* DH5 α на экспрессионном векторе pET-32a. Для штамма *E.coli* BL21(DE3), содержащего плазмиду p32 $relE1_{Lcs}$, эффективность роста на чашках с IPTG и на чашках без индуктора не отличалась (рисунок 22).

Рисунок 22 – Влияние экспрессии клонированного гена токсина *relE1_{Lcs}* на рост штамма *E.coli* BL21(D3) на твердой среде, содержащей плазмиды: 1 – контроль p32a; 2 - p32*relE1_{Lcs}*.

Таким образом, на четвертом этапе работы было показано, что белки токсинов YoeB_{Lth}, RelE3_{Lth}, RelE1_{Lhv} и RelE3_{Lhv} при экспрессии подавляют рост клеток *E.coli*, т.е. проявляет в них функциональную активность; слабую активность проявляет и токсин RelE1_{Lth} (он вызывал только уменьшение размера колоний *E.coli*). Клонированный ген *yoeB*_{Lth} при индукции вызывал гибель бактериальных клеток. Одиночная нуклеотидная замена в гене *yoeB*_{Lth} , приводившая к аминокислотной замене в белке (Asp62 \rightarrow Glu62), полностью устраняла токсический эффект в клетках *E.coli*. Подобные одиночные замены аминокислот, резко менявшие свойства токсинов, отмечены и для других TA систем [Khoo S.K. et al., 2007].

Для штаммов *E.coli* BL21(DE3), содержащих плазмиды с токсинами $relE2_{Lhv}$, $relE5_{Lhv}$, и $relE1_{Lcs}$ эффективность роста на чашках с IPTG и на чашках без индуктора не отличалась, однако это не значит, что данные белки не являются токсинами. Наличие токсинов, не проявляющих активности в *E.coli*, показано для многих токсинов *M.tuberculosis* [Ramage H.R. et al., 2009]. Подобные факты нельзя рассматривать как отсутствие активности токсинов в клетках лактобацилл. Наиболее вероятное объяснение состоит в том, что один из антитоксинов, присуствующих в клетках *E.coli* BL21(D3), способен подавлять активность клонируемых токсинов лактобацилл. Совмещение в клетках *E.coli* генов токсина *yoeB*_{Lrh} и антитоксина *yefM*_{Lrh}, токсина *relE3*_{Lhv}, и антитоксина *relB3*_{Lhv}, токсина *relE1*_{Lhv} и антитоксина *relB3*_{Lhv}, токсина *relE1*_{Lhv} и антитоксина *strub* образом, для данных TA систем лактобацилл показана функциональная активность обоих белков.

3.5 Изучение регуляции экспрессии TA системы YefM-YoeB у штаммов L.rhamnosus

В предыдущем разделе рассмотрены и проанализированы три TA системы суперсемейства RelBE – relE1_{Lrh}, YefM-YoeB_{Lrh}, RelB3-RelE3_{Lrh} – в различных штаммах *L.rhamnosus*. Для более детальных исследований нами была выбрана TA система YefM-YoeB_{Lrh}, в которой белок токсин YoeB_{Lrh} проявляет свою активность и белок антитоксина YefM_{Lrh} способен подавлять активность токсина в клетках *E.coli*. Задачей данного раздела работы было изучение структурной организации оперона YefM-YoeB_{Lrh} и его транскрипции.

3.5.1 Особенности проксимального и дистального районов ТА системы YefM-YoeBLrh

У всех штаммов, содержащих ТА систему YefM-YoeB_{Lrh}, как из лабораторной коллекции, так и из GenBank, нуклеотидные последовательности проксимального (410 нп) и дистального (213 нп) районов оперона были идентичны (за исключением штамма 40 ст, который имеет одну аминокислотную замену в гене токсине) (рисунок 23).

Рисунок 23 – Нуклеотидная последовательность оперона YefM-YoeB_{Lrh.} Желтым отмечены сайты инициации трансляции; синим – сайты терминации трансляции; серым – участок BOX; веленым отмечен основной промотор оперона. Красные буквы – сайты инициации транскрипции.

Мы подробно исследовали область, предшествующую оперону, и обнаружили, что она содержит так называемый ВОХ – элемент длинной около 300 пн с GC-составом 54% (GC-состав геномов *L. rhamnosus* в пределах 43,3-43,6%). Данный участок присутствует во всех

секвенированных геномах *L. rhamnosus* и представлен в 12-13 копиях на геном. На рисунке 24 показано схематическое расположение этого элемента в трех секвенированных геномах *L. rhamnosus*.

Рисунок 24 – Расположение ВОХ – элемента в 3-х геномах *L. rhamnosus*

Из рисунка 24 видно, что последовательности близкородственных штаммов АТСС 8530 и Lc705 имеют небольшие отличия в расположении BOX – элемента. Направления данных элементов разные и указаны стрелками. В отличие от них, штамм GG имеет иное расположение BOX-элемента и не содержит последовательностей, гомологичных TA системе YefM-YoeB_{Lth}. Все элементы расположены исключительно в некодирующих областях. Они не идентичны, но на основе их нуклеотидных последовательностей они могут быть классифицированы в несколько групп (рисунок 25). Кроме того, в дистальной области оперона мы идентифицировали новую ORF, расположенную за стоп-кодоном гена токсина на другой нити ДНК, чем TA оперон (рисунок 23).

Рисунок 25 – Филогенетическое дерево, отражающее взаимоотношения между тринадцатью последовательностями ВОХ из штамма *L. rhamnosus* ATCC 8530

3.5.2 Идентификация сайтов инициации транскрипции в ТА системе YefM-YoeBLrh

Попытки несколько раз клонировать оперон yefM- $yoeB_{Lrh}$ целиком были безуспешными. Мы предположили, что внутри данной системы имеется какой-то регуляторный элемент – возможно промотор, который стоит перед геном токсина, и попытались экспериментально подтвердить наше предположение. Для этого провели стандартный эксперимент по поиску промоторов по методу удлинение праймера (см. материалы и методы) с праймерами yoeB_lr_PCR F и yoeB_lr_PCR R и ДНК штаммов *L. rhamnosus* 24дст, B51 и 50зв. Мы обнаружили два участка инициации транскрипции перед геном токсина и в пределах последовательности гена антитоксина, каждый участок содержит 2 сайта инициации транскрипции (рисунок 26). Таким методом нам удалось найти два предполагаемых промотора (P_{1/2} и P_{3/4}), которые находятся внутри TA системы.

Рисунок 26 – Определение точек инициации транскрипции методом удлинения праймера для штаммов *L. rhamnosus* 24дст, B51 и 50зв с праймером yoeB_lr_IRD_3. s – стационарная фаза роста культур; Жирным шрифтом выделены нуклеотиды, с которых начинается транскрипция.

При анализе района, предшествующего оперону yefM-yoeB_{Lrh}, нам удалось обнаружить, исходя из литературных данных о строении ТА системы и используя поиск промотеров на сайте BPROM (http://linux1.softberry.com/berry.phtml), кроме ВОХ-элемента, область. которая соответствует промотору (рисунок 27). Наличие такого промотора не удалось показать методом удлинения праймера. Поэтому для поиска основного промотора (РАТ) перед опероном мы использовали метод определения дефицитных мРНК (RLM-ПЦР, см. материалы и методы). При поиске основного промотора оперона методом RLM-ПЦР последовательность праймера, которая использовалась для выявления основного промотора (РАТ), оказалась еще и комплементарной к 3'концу гена у oeB_{Lrh} . Таким способом, нам удалось найти и основной промотор (P_{AT}) и еще один предполагаемый промотор P_X, который находится за опероном и инициирует транскрипцию в противоположном направлении. Для всех четырех участков инициации транскрипции были

идентифицированы стартовые кодоны, терминирующие кодоны и предполагаемые ORF. ORF, соответствующая часть гена антитоксина *yefM*, была названа $\Delta yefM$ (рисунок 27). Антитоксины TA систем II типа имеют два активных участка: С-концевой взаимодействует с белком токсина, N-концевой имеет ДНК-связывающий домен, взаимодействует с промоторным участком оперона и подавляет его транскрипцию [Yamaguchi Y. et al., 2011]. Гипотетический Δ YefM пептид, образующийся при транскрипции с T4/3, возможно, взаимодействует с белком токсина, но не имеет ДНК-связывающей регуляторной активности.

3'end BOX

								-35
5´	CTCGGAGCAT	CGGAAATCAC	TTAATTAGAG	TAGAACCGAG	AAAAAGTTGA	CACTTGCCGC	CGCGTCCCAA	TCG <mark>TTGCTC</mark> A
З́	GAGCCTCGTA	GCCTTTAGTG	AATTAATCTC	ATCTTGGCTC	TTTTTCAACT	GTGAACGGCG	GCGCAGGGTT	AGCAACGAGT
		-10	tss A	T RBS	Start	vefM	voeB lr Ti	RD 11D
81	TACGTACAAT	ATGTTG TACA	ATATTTTCGA	AAGGT AAGGT	GCCGTT <mark>ATG</mark> G	AAGCAACGAA	TTATAGTGAT	TTCCGCCGCA
81	ATGCATGTTA	TACAACATGT	TATAAAAGCT	TTCCATTCCA	CGGCAATACC	TTCGTTGCTT	AATATCACTA	AAGGCGGCGT
		vo	eB lr IRD (down				tss T4/3
161	ACCTTAAGCA	ТТАТ АТС АСТ	CAAGTCAACG	AAGACGCCGA	ACCGCTACTG	GTTACCGCTA	AAGATGATGA	TGACAATGTG
161	TGGAATTCGI	AATATACTCA	GTTCAGTTGC	TTCTGCGGCI	TGGCGATGAC	CAATGGCGAI	TTCTACTACI	ACTGTTACAC
	Start /	\ yefM						
241	GTGGTT <mark>ATG</mark> Z	GCAAGCACGA	A TTTTGACGCC	ATCGAAGAAA	CCCTGTATTI	ACTCAGCAAI	CCCAAGCTGA	TGGCCAAAAT
241	CACCAATACI	CGTTCGTGCI	AAAACTGCGG	TAGCTTCTTI	GGGACATAAA	TGAGTCGTTA	GGGTTCGACI	ACCGGTTTTA
				tss	Ͳ2/Ͳ1	st	art voeB S	stop vefM
321	CAAACGTGGT	GATGCCCAAA	TTGCCGCTGG	AAAGGCTAAA	CAGCACGAGT	' TGTTAACGGA	CTTCGATCAT	GATTAAAACC
321	GTTTGCACCA	CTACGGGTTI	AACGGCGACC	TTTCCGATTI	GTCGTGCTCA	ACAATTGCCI	GAAGCTAGTA	CTAATTTTGG
	wood in T	2 3						
101						CAACCCCACA	3 TO 3 3 3 CO 3 3	ͲͲϪϪͲϹϪϪϹͲ
401	ACCTGGCTAC	TACGAACCCG	GGACIACAIG G CCTGATGTAC	ATAACCGTAC	TAGTTTTGCI	GTTCGCCTGI	TAGTTTGCTT	AATTAGTTGA
481	CATTCAAGO	C ATTGACCGI	IG ACCCTTATA	A AGGCATCGO	A AAACCTGAG	C CACTTAGAT	A TGCGCTAAC	C GGAAAATGGT
481	GTAAGTTCGG	G TAACTGGCAC	C TGGGAATATT	TCCGTAGCCI	TTTGGACTCO	G GTGAATCTAI	ACGCGATTGG	CCTTTTACCA
							yoeB lr IF	D down
561	CACGTCGGAI	TGATCAGGAA	A AATCGCATCA	TCTACAGCAI	TGAAAAGAAC	CACATTAATA	TTTTCGCCTG	CCGCACTCAC
561	GTGCAGCCTA	ACTAGTCCTI	TTAGCGTAGT	AGATGTCGTA	ACTTTTCTTC	GTGTAATTAT	AAAAGCGGAC	GGCGTGAGTG
:	Stop yoeB	Stop ORF27	yoeB lr 1	RD up				
641	TACAGT <mark>TAA</mark> C	C AATCATATTO	AAGTTTGCGG	CTCATTCACA	ATCTTTGAGI	GCCAACCATC	GTTATTTCGG	TCCACCATCC
641	ATGTCAATTO	; TT AGT ATAAC	TTCAAACGCC	GAGTAAGTGI	TAGAAACTCA	CGGTTGGTAG	CAATAAAGCC	AGGTGGTAGG
	s	tart ORF27	7 tss X					
721	AATATCTCTC	G ATTCATAGCO	С АGCAAA <mark>A</mark> AAT	GGATTCACCA	CTTTTAACGO	TTGCGAATCC	ATTTTTTGTG	TCGTTCAGGG
721	TTATAGAGAC	C TAA <mark>GTA</mark> TCGO	G TCGTTT T TTA	CCTAAGTGGI	GAAAATTGCC	C AACGCTTAGG	ТААААААСАС	AGCAAGTCCC
						Stop	rpe	
801	TCTACCATCI	ATATATTTGO	G TTATCAGAAT	AATATAACAA	AATTGCCTCA	CCCAAACACI	CA 3´	
801	AGATGGTAGA	TATATAAACO	C AATAGTCTTA	TTATATTGTI	TTAACGGAGI	GGGTTTGTG <mark>A</mark>	<u>GT</u> 51	

Рисунок 27 – Структурная организация оперона *yefM-yoeB_{Lrh} L. rhamnosus*. Конец ВОХ-элемента отмечен прямой линией. Выделены сайты связывания с сигмафактором 70 (-10, -35) и рибосомой (RBS) – инициирующие и терминирующие кодоны трансляции, сайты инициации транскрипции и последовательности праймеров, использованых при определении сайтов инициации транскрипции. Таким образом, нам удалось обнаружить участок ВОХ, предшествующий гену антитоксину, и 4 предполагаемых промотора в опероне yefM-yoeB_{Lrh}. Схематическое изображение исследуемой системы представлено на рисунке 28. В дальнейшие наши задачи входило выяснить активность предполагаемых промоторов и участка ВОХ.

3.5.3 Исследование активности предполагаемых промоторов

Для определения активности предполагаемых промоторов и района BOX использовали плазмиду pMG16 плазмида с геном-репортером β-галактозидазы и клонированным районом предполагаемого промотора встраивалась в геном грам-положительной бактерии *B.subtilis* DB104 (см. материалы и методы).

Для проверки активности промоторов использовали следующие участки:

ВОХ+Р_{АТ}: праймеры SB2271/SB2273

Р_{АТ}: праймеры SB2272/SB2273

Р_{1/2}: праймеры SB2274/SB2275

Р_{3/4}: праймеры SB2276/SB2277

Р_X: праймеры SB2278/SB2279

При измерении β-галактозидазной активности промоторы P_{3/4}, P_{1/2}, P_X не проявили активности, превышающей отрицательный контроль. Активность основного промотора P_{AT} была высокой (рисунок 29) как с BOX элементом, так и без него, т.е. BOX-элемент не содержит промотора.

Активность промоторных участков

Рисунок 29 – Измерение активности β -галактозидазы промоторов P_{AT} , $P_{3/4}$, $P_{1/2}$, P_x P_1 – отрицательный контроль; P_{16} – положительный контроль

На основе проведенных экспериментов по измерению активности промоторов было выявлено, что активен только основной промотор, P_{AT} . При этом BOX элемент никак не влиял на активность данного промотора. Таким образом, перед опероном *yefM-yoeB_{Lrh}* мы обнаружили BOX-элемент, функции его не известны, идентифицировано 4 промотора. Транскрипционная активность в клетках *B.subtilis* показана только для промотора оперона P_{AT} .

3.5.4 Изучение транскрипционной активности генов yefM-yoeB_{Lrh} в стрессовых условиях методом RTq PCR

Представляло интерес определить экспрессию оперона yefM- $yoeB_{Lrh}$ в различных стрессовых условиях. Для эксперимента были выбраны три штамма *L. rhamnosus* 24дст, 50зв и 51гн, имеющие идентичную нуклеотидную последовательность оперона. Была выполнена серия опытов количественной ПЦР в реальном времени с использованием прямого праймера, расположенного в гене антитоксина $yefM_{Lrh}$, и обратного праймера, расположенного в гене токсина $yoeB_{Lrh}$. Для всех 4-х исследованных штаммов были получены РНК, что говорит о транскрипции обоих генов в составе одной РНК, т.е. подтверждает оперонное строение TA системы. Выбраны следующие стрессовые условия для экспоненциально растущей культуры: 48°C; 0,8M NaCl; 48°C + 0,8M NaCl; кислотный стресс (pH 4.0). Определена экспрессия генов в экспоненциальной культуре относительно экспрессии в стационарной культуре. Результаты представлены на рисунке 30. Были выбраны такие значения стрессовых факторов, которые не снижали жизнеспособность культур.

Рисунок 30 – Экспрессия оперона *yefM-yoeB_{Lrh}* в различных стрессовых условиях. Определялась экспрессия оперона в экспоненциальной фазе роста относительно экспрессии в стационарной фазе роста и при разных стрессовых условиях (48°C; 0,8 м NaCl; 48°C + 0,8 м NaCl; кислотный стресс (pH 4.0)). В качестве контроля использован ген *ileS*.

Увеличение экспрессии TA системы происходило для всех 3-х штаммов при 48°C, хотя и в разной степени. При кислотном и солевом стрессе экспрессия TA системы не менялась. При сочетании обоих факторов стресса (температура и NaCl), были получены промежуточные значения.

Основываясь на результатах по относительной экспрессии штаммов *L. rhamnosus*, для дальнейших исследований TA системы YefM-YoeB_{Lrh} нами были выбраны условия стресса в виде температурного шока (10 минут – 48°C). Ранее было описано (см. раздел 4), что в гене токсина *yoeB*_{Lrh} у штамма 40ст есть одиночная нуклеотидная замена, приводившая к аминокислотной замене в белке (Asp62 \rightarrow Glu62). Эта мутация полностью устраняла токсический эффект белка в клетках *E.coli*. Были проделаны опыты с теми же праймерами, ДНК штаммов *L.rhamnosus* 24дст и 40ст и геном-маркером *ileS*. РНК получали из стационарных культур (18 часов) и культур экспотенциальной стадии роста (8 часов), выращенных при 37⁰С и 48⁰С. Мы сравнили экспрессию генов в экспотенциальных и стационарных культурах (рисунок 31).

Рисунок 31 – Экспрессия генов *yefM-yoeB_{Lrh} L. rhamnosus* для 8-ми часовой культуры по сравнению с 18-часовой. Контроль – ген *ileS*.

Далее мы сравнили экспрессию при стрессовых условиях (48⁰C), относительно нормальных (37⁰C) (рисунок 32).

Рисунок 32 – Экспрессия генов *yefM-yoeB_{Lrh} L. rhamnosus* в стрессовых условиях при 37⁰С относительно 48⁰С. Контроль – ген *ileS*.

Транскрибировалась и ТА системы в штамме 40ст, несмотря на то, что мутация в гене токсина делала его неактивным. Температурный шок увеличивал транскрипцию только в экспотенциально растущей культуре, но не в стационарной.

Как показали данные RT-PCR, гены yefM- $yoeB_{Lrh}$ L. rhamnosus считываются на одной мРНК, т.е. образуют оперон. Перед опероном мы обнаружили некодирующий фрагмент ДНК размером около 300 пн, многократно повторенный в межгенных районах различных штаммов; мы назвали этот фрагмент BOX'ом по аналогии с подобным элементом ДНК, описанным у пневмококков. У пеневмококков BOX-элемент влияет на экспрессию соседних генов и регуляцию таких процессов, как смена фаз, вирулентность, компетентность в генетической трансформации и способен к перемещению по геному [Knutsen E. et al., 2006]. BOX, расположенный перед опероном yefM- $yoeB_{Spn}$ S.pneumoniae. содержал промотор и влиял на экспрессию оперона [Chan W. et al., 2011]. В идентифицированном нами BOX-элементе мы не смогли обнаружить промотор – ни при анализе его нуклеотидной последовательности, ни при клонировании в векторе с геном-репортером. Можно только предполагать, что у L.rhamnosus, как и у S.pneumoniae, BOX участвует в перестановках и транспозициях фрагментов генома.

Мы обнаружили также новую небольшую ORF – ORF 27, расположенную после локуса yefM-yoeB_{Lrh} L. rhamnosus. Мы также смогли идентифицировать соответствующую ORF 27 точку инициации транскрипции. ORF 27 не перекрывалась с геном токсина yoeB_{Lrh}, однако способ определения точки инициации транскрипции несомненно свидетельствует о том, что 3' конец PHK, соответствующей ORF 27, перекрывается с 3' концом гена yoeB_{Lrh}. Мы не смогли идентифицировать вблизи ORF 27 сайт связывания с рибосомами; возможно, данная PHK транслируется как "leaderless" PHK или является нетранслируемой регуляторной PHK. Данный транскрипт сходен по расположению с антитоксином I типа, характерным для *Bacillus subtilis* (TA системы TxpA/RatA, BsrG/SR4, YonT/AS-YonT). Эти антитоксины взаимодействуют с 3' концом мPHK токсина и образуют 2-х цепочечную PHK, которая разрушается нуклеазами [Brantl S. et al., 2012].

В самом локусе *yefM-yoeB_{Lrh} L. rhamnosus* мы идентифицировали три сайта инициации транскрипции, в каждом из сайтов транскрипция начиналась с двух близлежащих нуклеотидов. Один из сайтов располагался перед геном антитоксина, два других – внутри гена антитоксина, в середине его (tss $\frac{1}{2}$) и конце (tss 4/3). РНК, синтезируемые с этих tss, соответствовали С-концевой части гена антитоксина и гену токсина. Необычное расположение точек инициации транскрипции внутри функционирующего гена предполагает жесткую стабильность этих сайтов. У ТА систем II типа белок антитоксина обычно имеет два активных домена: С-концевой взаимодействует с белком токсина и нейтрализует его активность, а N-концевой представлен ДНК-связывающим районом, он взаимодействует с промотором оперона и регулирует его транскрипцию (см. раздел 1.2.2). Возможно, гипотетитческий пептид Δ YoeB, для которого РНК транскрибируется с tss 4/3,

имеет только одну функцию - подавлять активность токсина, но не регулировать транскрипцию оперона.

Сайты связывания с сигмой 70 субъединицей РНК полимеразы и рибосомой мы смогли идентифицировать только для tssAT, расположенной перед геном антитоксина. Именно соответствующий участок ДНК показал активность как промотор при клонировании в плазмиде с геном-репортером. Для двух других участков, tss 1/2 и tss 4/3, показать промоторную активность не удалось. Возможно, эти сайты узнаются сигма-факторами, специфичными для лактобацилл или активными в определенных стрессовых условиях. Перед обоими этими сайтами мы обнаружили последовательность TGG......TGG, сходную с промотором, узнаваемым субъединицей сигма-54 РНК полимеразы [Stevens, M.J. et al., 2010]. Гипотетические РНК, которые образуются с tss ½ и tss 3/4, могут быть и регуляторными нетранслируемыми РНК. Возможно, они транслируются по т.н. leaderless механизму. Следует отметить, что перед всеми 4-мя tss есть инвертированный повтор. Следует отметить, что перед всеми 4-мя tss есть инвертированные повторы, а перед tssAT и tss 4/3 – и прямые повторы.

При изучении транскрипции оперона мы показали, что на активность транскрипции влияют температура и стадия роста культуры. Использованные в работе штаммы *L.rhamnosus* имели идентичную нуклеотидную последовательность как оперона, так и окружающих его участков ДНК. Однако изменение активности транскрипции, определяемое RT-PCR (рисунок 29), и активность различных сайтов инициации транскрипции (рисунок 26) у разных штаммов были различны. Вероятно, в регуляции активности ТА системы участвуют различные белки клетки. Возможно, отчасти эти отличия обусловлены различными нишами обитания штаммов. Так, штаммы 24дст и 50зв в разных стрессовых условиях реагировали сходно и отлично от штамма B51; штаммы 24дст и 50зв были выделены из одной ниши тела человека (ротовой полости), а штамм B51 выделен из вагинальной полости.

3.6 Поиск и характеристика новых ТА систем у L.helveticus

В последние 10 лет происходит интенсивное изучение структуры, функций и распространения хромосомных ТА систем бактерий. Обнаруживаются новые типы и семейства ТА систем. Поиск новых ТА систем у лактобацилл обусловлен тем, что, с одной стороны, это важные элементы регуляторной системы клетки, а с другой – тем, что они могут быть использованы для штаммовой идентификации, в том числе при метагеномном анализе.

3.6.1 Поиск новых ТА систем в секвенированных геномах L.helveticus

Из литературных данных известно, что в подавляющем большинстве случаев ТА системы II типа организованы стандартно: гены токсина и антитоксина расположены либо на близком расстоянии друг от друга (до 70 пн), либо перекрываются (на 30 пн); ген антитоксина предшествует гену токсина и его длина, обычно, меньше [Sevin E.W. et al., 2007], оперон имеет величину примерно 800 пн. На основе этих данных с помощью написанного нами скрипта по вышеуказанным параметрам мы попытались найти новые предполагаемые ТА системы в геномах секвенированных и аннотированных штаммов *L.helveticus* из GenBank. Применив данный скрипт для анализа полностью секвенированных штаммов *L.helveticus* из GenBank (DPC4571, R0052, H10), мы получили список генов-кандидатов, удовлетворяющих заданным параметрам. Для штаммов *L.helveticus* DPC4571 было найдено двадцать семь, для штаммов *L.helveticus* H10 – тридцать пять и для *L.helveticus* R0052 – шестьдесят две предполагаемых пары генов, удовлетворяющих заданным параметрам.

Далее были удалены гены-кандидаты с функцией явно не удовлетворяющей свойствам ТА систем, такие как, например, гены 30S или 50S рибосомальных субъединиц. В итоге в списке осталось одиннадцать предполагаемых ТА систем в штамме DPC4571, десять предполагаемых ТА систем в штамме H10 и тридцать две предполагаемые ТА системы в штамме R0052. Перечень предполагаемых TA систем приведён в приложении В. Далее по гомологии аминокислотных последовательностей с помощью программы blastp определялись TA системы, сходные у штаммов *L.helveticus* H10, DPC4571 и R0052. В конечном счете, у нас осталось 27 различных TA систем.

Таким образом, поиск базе данных И анализ гомологии аминокислотных В последовательностей позволил выделить новые предполагаемые ТА системы в уже аннотированных геномах. Продукты большинства генов в предполагаемых ТА системах определялись как «гипотетический белок», однако были и белки, функцию которых можно было предположить по наличию определенных доменов.

3.6.2 Идентификация и полиморфизм новых ТА систем в штаммах L.helveticus из лабораторной коллекции

На следующем этапе мы определяли наличие генов токсинов обнаруженных новых 27 ТА систем в четырех штаммах *L.helveticus* российского происхождения, выделенных из организма людей: 100аш, NKI, NNIE, Er315. Для этого были созданы праймеры по концам генов предполагаемых токсинов (см. материалы и методы, таблица 7), и проведена ПЦР с хромосомной ДНК исследуемых штаммов. В результате гены восемнадцати (из двадцати семи) идентифицированных ранее токсинов были обнаружены в геномах штаммов *L.helveticus* из лабораторной коллекции (таблица 24).

Таблица 24. Предполагаемые TA системы в штаммах *L.helveticus* и геномный полиморфизм по предполагаемым генам токсинов.

ТА	Локус Таг	Штаммы из лабораторной			Штаммы из GenBank			
система		коллекции 100аш Er315 NK1 NNIE !				H10	DCP5471	R0052
1	2	3	4	5	6	7	8	9
TA1 _{Lhv}	LBHH_0842- 0843	+	+	+	-	+	-	+
TA2 _{Lhv}	Lhv_2095- 2096	+	+	+	+	-	+	+
TA3 _{Lhv}	LBHH_1976- 1977	+	+	+	-	+	+	-
TA4 _{Lhv}	Lhv_0782- 0783	+	+	+	+	+	+	+
$TA5_{Lhv}$	R0052_02870- 02875	+	+	+	+	+	-	+
TA6 _{Lhv}	R0052_03145- 03140	+	+	+	+	+	+	+
TA7 _{Lhv}	R0052_05470- 05465	+	+	+	+	+	+	+
$TA8_{Lhv}$	R0052_00225- 00230	-	-	-	+	+	-	+
TA9 _{Lhv}	R0052_11615- 11620	+	-	+	+	+	-	+
TA10 _{Lhv}	R0052_06470- 06465	+	+	+	+	-	-	+
$TA11_{Lhv}$	R0052_10550- 10555	+	+	+	+	+	+	+
TA12 _{Lhv}	R0052_10565- 10560	+	+	+	+	+	+	+
TA13 _{Lhv}	R0052_07345- 07350	-	-	-	+	+	+	+
TA14 _{Lhv}	Lhv_2403 – 0815	+	+	+	+	+	+	+

1	2	3	4	5	6	7	8	9
TA15 _{Lhv}	Lhv_0860- 2407	+	+	+	+	+	+	+
TA16 _{Lhv}	Lhv_0454- 0455	+	+	+	+	+	+	-
TA17 _{Lhv}	R0052_03080- 03085	+	+	+	+	+	-	-
TA18 _{Lhv}	R0052_08040- 08035	+	+	+	+	-	+	-

В результате нами было показано, что по наличию или отсутствию генов предполагаемых токсинов ТА систем лабораторные штаммы отличались друг от друга (таблица 24). Гены предполагаемых токсинов распределяются в штаммах из лабораторной коллекции неодинаково, что позволяет нам говорить о геномном полиморфизме по данным локусам.

Для изучения генного полиморфизмов определялась нуклеотидная последовательность продуктов ПЦР и сравнивалась с последовательностями генов предполагаемых токсинов в секвенированных штаммах *L.helveticus* из GenBank. Штаммы демонстрировали значительный генный полиморфизм (таблица 25). При сравнении нуклеотидных последовательностей, за референсную бралась последовательность соответствующего гена в штамме, в котором была обнаружена предполагаемая ТА система.

Таблица 25. Полиморфизм предполагаемых новых генов токсинов в штаммах *L.helveticus* из лабораторной коллекции. В столбцах 5 и 6 указаны число и положение нуклеотидных и аминокислотных замен в генах и белках токсинов лабораторных штаммов по сравнению с референсным штаммом.

ТА системы	Локус таг гена токсина	Лаборатор- ные штаммы	Референс ный штамм	Нуклеотиды	Аминокислоты
1	2	3	4	5	6
TA1 _{Lhv}	LBHH_0843	100аш, Er315, NK1	H10	1 (№561 G→T)	1 (№187 Glu→Asp)
TA2 _{Lhv}	Lhv_2095	100аш, Er315, NK1	DPC 4571	0	0
		NNIE		1 (№163 G→A)	1 (№54 Ala→Thr)
$TA3_{Lhv}$	LBHH_1997	100аш, Er315, NK1	H10	$3 (N \ge 194 C \rightarrow T) (N \ge 222 C \rightarrow T) (N \ge 338 A \rightarrow G)$	2 (№65 Thr→Ile) (№113 Tyr→Cys)
TA4 _{Lhv}	Lhv_0783	100аш, Er315, NK1, NNIE	DPC 4571	$3 (\mathbb{N} \cong 174 \text{ T} \rightarrow \text{C})$ $(\mathbb{N} \cong 238 \text{ T} \rightarrow \text{G})$ $(\mathbb{N} \cong 256 \text{ A} \rightarrow \text{G})$	2 (№80 Cys→Gly) (№86 Thr→Ala)
TA5 _{Lhv}	R0052_02870	100аш, Er315, NK1, NNIE	R0052	$3 (N \ge 106 \text{ T} \rightarrow \text{G})$ $(N \ge 141 \text{ G} \rightarrow \text{A})$ $(N \ge 352 \text{ A} \rightarrow \text{G})$	2 (№36 Ser→Ala) (№118 Arg→Gly)

107

1	2	3	4	5	6
TA6 _{Lhv}	R0052_03145	100аш, Er315, NK1, NNIE	R0052	$\begin{array}{c} 3 (N \ 24 \ A \rightarrow T) \\ (N \ 239 \ C \rightarrow T) \\ (N \ 263 \ T \rightarrow C) \end{array}$	1 (№88 Val→Ala)
TA7 _{Lhv}	R0052_05470	100аш, Er315, NK1, NNIE	R0052	$(\underbrace{\mathbb{N} \cong 13 \text{ A} \rightarrow \text{G}})$ $(\underbrace{\mathbb{N} \cong 31 \text{ C} \rightarrow \text{T}})$ $(\underbrace{\mathbb{N} \boxtimes 240 \text{ A} \rightarrow \text{C}})$ $(\underbrace{\mathbb{N} \boxtimes 556 \text{ A} \rightarrow \text{G}})$ $(\underbrace{\mathbb{N} \boxtimes 559 \text{ A} \rightarrow \text{G}})$ $(\underbrace{\mathbb{N} \boxtimes 580 \text{ insC}})$	5 (№5 Thr→Ala) (№11 Gln→stp) (№186 Lys→Glu) (№187 Asn→Asp) (№194 frameshift)
TA8 _{Lhv}	R0052_00225	NNIE	R0052	1 (№102 C→T)	0
TA9 _{Lhv}	R0052_11615	100аш, NK1, NNIE	R0052	1 (№337 A→G)	1 (№113 Tyr→Cys)
TA10 _{Lhv}	R0052_06470	100аш, Er315, NK1, NNIE	R0052	1 (№119 A→G)	1 (№40 Asp→Gly)
TA11 _{Lhv}	R0052_10550	100 аш	R0052	1 (№84 G→A)	0
		Er315, NK1, NNIE		0	0
TA12 _{Lhv}	R0052_10565	100аш, Er315, NK1	R0052	$\begin{array}{c} 3 (\mathbb{N} \cong 152 \text{ G} \rightarrow \text{A}) \\ (\mathbb{N} \cong 158 \text{ A} \rightarrow \text{C}) \\ (\mathbb{N} \cong 195 \text{ T} \rightarrow \text{G}) \end{array}$	2 (№51 Cys→Tyr) (№53 Glu→Ala)
		NNIE		$\begin{array}{c} 2 (N \ge 158 \text{ A} \rightarrow \text{C}) \\ (N \ge 195 \text{ T} \rightarrow \text{G}) \end{array}$	1 (№53 Glu→Ala)
TA13 _{Lhv}	R0052_07345	NNIE	R0052	0	0
TA14 _{Lhv}	Lhv_2403	100аш, Er315, NK1, NNIE	DPC 4571	0	0
TA15 _{Lhv}	Lhv_0860	100аш, Er315, NK1, NNIE	DPC 4571	0	0
TA16 _{Lhv}	Lhv_0454	Er315, NK1, NNIE	DPC 4571	0	0
TA17 _{Lhv}	R0052_03080	100аш, Er315, NK1, NNIE	R0052	0	0
TA18 _{Lhv}	R0052_08040	100аш, Er315, NK1, NNIE	R0052	0	0

Внутри каждой из выявленных и проанализированных систем нуклеотидные последовательности генов у всех 4-х лабораторных штаммов были идентичны или отличались единичными заменами за исключением одной системы – TA7_{Lhv}, в которой была показана значительная деградация гена токсина.
3.6.3 Клонирование и экспрессия в клетках E.coli генов новых TA систем L.helveticus

Чтобы выяснить, проявляют ли продукты идентифицированных генов токсинов *L.helveticus* ингибирующую активность именно как токсины, мы определили влияние экспрессии данных генов на рост клеток *E.coli*. Гены токсинов были клонированы в клетках *E.coli* на экспрессионном векторе pET-32a. Клонированы гены *Lhv_2403, Lhv_0860, LBHH_0843, Lhv_2095, LBHH_1997, Lhv_0783, Lhv_0454* из штамма NK1, а также гены $R0052_02870$, $R0052_03080$, $R0052_03145$, $R0052_05470$, $R0052_00225$, $R0052_11615$, $R0052_06470$, $R0052_08040$, $R0052_10550$, $R0052_10565$, $R0052_07345$ из штамма NNIE. Влияние экспрессии клонированных генов токсинов на рост клеток *E.coli* определяли на твердой и в жидкой средах (см. материалы и методы).

<u>На твердой среде.</u> Для штаммов *E.coli* BL21(DE3), содержащих плазмиды $p32alhv_2403$ _NK, $p32aR_6470$ _NN и $p32aR_10565$ _NN с клонированными генами токсинов *lhv_2403*, *R0052_06470* и *R0052_10565*, эффективность роста на чашках с IPTG была значительно ниже, чем на чашке без индуктора. Таким образом, индукция данных белков в значительной степени подавляла рост клеток *E.coli*. Для штаммов *E.coli* BL21(DE3), содержащих плазмиды с другими предполагаемыми токсинами, эффективность роста на чашках с IPTG и на чашках без индуктора не отличалась (рисунок 33).

Рисунок 33 – Влияние экспрессии клонированных генов токсинов *L.helveticus* на рост штамма *E.coli* BL21(D3) на твердой среде, содержащей плазмиды:

1 – p32a*lhv_2403_*NK; 2 – p32a*R_6470_*NN; 3 – p32a*R_10565_*NN; 4 – контроль, вектор рЕТ32а.

В жидкой среде выявляли активность генов, проявивших свою активность в опытах на твердой среде, путем измерения оптической плотности культуры (рисунок 34).

Рисунок 34 – Характер роста штаммов *E.coli*, содержащих плазмиды с клонированными генами токсина (стрелкой показано время добавления индуктора).

При росте в жидкой среде индукция клонированных генов токсинов *Lhv_2403*, *R0052_06470* и *R0052_10565* дает значительное уменьшение скорости роста культуры; в наибольшей степени этот эффект проявлялся для гена *R0052_06470*. Это свидетельствует о проявлении активности данных генов как генов токсинов.

После выявления новых ТА систем, у которых белки токсинов проявляли активность в клетках *E.coli*, мы провели поиск белков, гомологичных токсинам и антитоксинам данных систем, в других организмах с помощью алгоритма blastp (<u>http://blast.ncbi.nlm.nih.gov/Blast.cgi/</u>) (таблица 26).

TA			Величина	Предполагаемая функция
система	Бе.	пок		белка по данным алгоритма
	Предполагаемый	Предполагаемый		BlastP и базы данных NCBI
	токсин	антитоксин		
TA14 _{Lhv}			75.00	Белок неизвестной функции,
		Lhv_0815	/388	свойственный лактобациллам
	I by 2403		0799	Мембранный белок;
	LIIV_2403		<i>)</i> //dd	гемолизин
			4599	Белок деления клетки
TA10 _{Lhv}		R0052_06465	- 5da	
	R0052_06470		74aa	Гипотетический белок
				Гипотетический белок;
TA12 _{Lhv}		R0052_10560	73aa	транскрипционный регулятор
				семейства XRE
	R0052_10565		75aa	Транскрипционный регулятор

Таблица 26 Предполагаемые функции белков новых гипотетических ТА систем *L.helveticus*

Из таблицы видно, что ближайшие гомологи обоих генов системы R0052_10560-10565 относятся к семейству транскрипционных регуляторов. Обычно к данному семейству принадлежат антитоксины. Данная гипотетическая TA система необычна еще и тем, что гены/белки T и A

имеют одинаковую величину; обычно Т больше А. Токсическое действие белка R0052_10565 может быть связано с каким-то новым неизученным его доменом. Возможно и другое объяснение токсического действия белка. Используемый для определения активности клонированного гена Т штамма *E.coli* содержит более 8 ТА систем; белок R0052_10565 может влиять на экспрессию какой-либо из этих TA систем и активировать токсин этой системы. Нужно отметить, что негомологичная TA система *L.helveticus*, состоящая из 2-х генов антитоксинов, была описана нами в разделе 2 и 3 (RelBB4_{Lhv}). Для гена предполагаемого токсина *R0052_6470* системы R0052_6465-6470 не было обнаружено ни для одного гомолога с известной функцией. Все они были аннотированы как гипотетические белки. Гомологов гена предполагаемого антитоксина была показана принадлежность к семействам. Для гомологов токсина была показана принадлежность к семействам (не более 35%). Для гомологов токсина была показана принадлежность к семействам и мембранных белков. Судя по данным таблицы 26, все три гипотетических токсина не имеют рибонуклеазной активности, свойственной подавляющему большинству токсинов II типа и являются новыми типами токсинов.

Далее мы изучили в клетках *E.coli* BL21(DE3) способность антитоксинов ингибировать действие токсинов *Lhv_2403*, *R0052_06470* и *R0052_10565*. Для этого в клетках *E.coli* BL21(DE3) совмещали ген антитоксина - на плазмиде pET-32a, и ген токсина на плазмиде pACYCDuet-1. Характер роста штаммов определяли на твердой среде с добавлением IPTG и без него.

Штаммы *E.coli*, содержащие клонированный ген токсина *R0052_10565*, резко замедляли рост после добавления индуктора (рисунок 35А). Введение в клетки *E.coli*, несущие плазмиду pDuet*R_10565_*NN с клонированным геном токсина *R0052_10565*, плазмиды $p32R_10560_NN$ с геном антитоксина *R0052_10560*, изменяло характер роста штамма, делая его практически неизменным в присутствии IPTG и без него (рисунок 35Б). Для систем Lhv_2403–0815 и R0052_06470-06465 с клонированными в плазмиду pACYCDuet-1 токсинами подобного эффекта не наблюдалось. Более того, клонированные в pACYCDuet-1 токсины *Lhv_2403* и *R0052_06470* без антитоксина даже на среде с IPTG не изменяли характера своего роста (рисунок 35А). Вероятно, это объясняется тем, что копийность плазмиды pACYCDuet-1 меньше (10-12), чем плазмиды pET32a (≈40), и количество синтезированного токсина, возникающего в ответ на индукцию при помощи IPTG, не хватает для проявления видимого эффекта.

111

Рисунок 35 – Влияние экспрессии клонированных генов токсинов (А), ТА систем (Б) *L.helveticus* на рост штамма *E.coli* BL21(D3) на твердой среде. Штаммы содержат плазмиды: 1 – pDuet*R_10565_*NN; 2 – pDuet*R_6470_*NN; 3 – pDuet*lhv 2403* NK; 4 – контроль, вектор pACYCDuet-1.

Таким образом, на шестом этапе работы в 3-х аннотированных геномах *L.helveticus* из GenBank выявлено *in silico* 27 пар генов, предположительно относящихся к генам TA систем. В четырех штаммах *L.helveticus* (100аш, NKI, NNIE, Er315/402), выделенных из микробиоты людей центрального региона России, идентифицированы 18 из этих гипотетических TA систем. Определены нуклеотидные последовательности генов предполагаемых токсинов для этих TA систем. Показано, что штаммы обладают геномным и практически не обладают генов предполагаемых токсинов для этих TA систем. Показано, что штаммы обладают геномным и практически не обладают генов предполагаемых токсинов, только три проявляют активность в клетках *E.coli* BL21 (DE3) как токсины, подавляя рост бактериальных клеток. Для одной из них, R0052_10565-10560, при совместном клонировании в клетках *E.coli* BL21 (DE3) гена токсина (на плазмиде pET32a) оба гена проявляли активность. Все это позволяет полагать, что данные три системы могут быть новыми типами TA систем.

3.7 Системы ТА суперсемейства RelBE как биомаркеры для идентификации штаммов лактобацилл

В настоящей работе у *L.rhamnosus*, *L.casei* и *L.helveticus* обнаружено только несколько TA систем суперсемейства RelBE. По-видимому, общее число TA систем у данных видов больше, что следует из результатов работы, описанных в предыдущем разделе.

Первоначально мы обнаружили, что исследованным штаммам *L.rhamnosus* (таблица 16, раздел 3), *L.helveticus* (таблица 22, раздел 3), и *L.casei* свойственны различный набор TA систем RelBE типа. Мы предположили, что генный и геномный полиморфизм TA систем может быть использован для характеристики отдельных штаммов и других видов лактобацилл.

Основываясь на полученных результатах по распределению ТА систем в штаммах L.rhamnosus, мы решили посмотреть, как системы суперсемейства RelBE будут распределены в других видах бактерий рода Lactobacillus из GenBank, имеющих полногеномный сиквенс на стадии «complete». За основу были взяты уже проаннотированные гены суперсемейства RelBE в штаммах L.rhamnosus, L.helveticus, L.casei из GenBank [http://www.ncbi.nlm.nih.gov/gene], которые описаны в разделе 2. Была сконструирована база генов токсинов и антитоксинов, которая использовалась для первичной аннотации генов в штаммах других видов Lactobacillus. Для каждого гена мы изучали распределение как на видовом, так и на штаммовом уровне и разнообразие аннотированных генов среди всех штаммов Lactobacillus, имеющих полногеномный сиквенс.

Для распределения генов токсинов и антитоксинов были взяты бактерии рода Lactobacillus, имеющие полногеномный сиквенс, а именно: 5 штаммов L. rhamnosus; 4 штамма L. helveticus; 3 штамма L. acidophilus; 7 штаммов L. casei; 2 штамма L. salivarius; 2 штамма L. fermentum; 2 штамма L. reuteri; 4 штамма L. plantarum; 2 штамма L. buchneri; 2 штамма L. brevis; 2 штамма L. acidophilus; 1 штамма L. crispatus; 1 штамм L. kefiranofaciens; 1 штамм L. johnsonii.

Все нуклеотидные последовательности генов и их выравнивание представлены в приложении Д. В таблице 27 приведено распределение генов суперсемейства RelBE по видам лактобацилл.

Гены	Вид лактобацилл
relE1	L. rhamnosus
relE2	L. rhamnosus
relE3	L. casei
relE4	L. brevis, L. fermentum, L. plantarum, L. buchneri
relE5	L. helveticus
relE6	L. casei
relE7	L. reuteri
relE8	L. acidophilus
relB1	L. casei
relB2	L. acidophilus, L. amylovorus, L. helveticus, L. crispatus, L. kefiranofaciens
relB3	L. helveticus, L. plantarum, L. kefiranofaciens, L. brevis, L. casei, L. buchneri
relB4	L. rhamnosus
relB5	L. helveticus
relB6	L. rhamnosus
yoeB1	L. rhamnosus
yoeB2	L. helveticus
yoeB3	L. crispatus
yefM1	L. plantarum, L. buchneri, L. fermentum, L. brevis
yefM2	L. salivarius
yefM3	L. helveticus
yefM4	L. acidophilus
yefM5	L. rhamnosus
yefM6	L. helveticus
yefM7	L. casei
yefM8	L. reuteri
yefM9	L. johnsonii

Таблица 27. Распределение генов суперсемейства RelBE по видам лактобацилл.

После проведенной расширенной аннотации по генам суперсемейства RelBE в бактериях рода *Lactobacillus* была построена диаграмма, показывающая наличие или отсутствие гена токсина или антитоксина в бактериях. На рисунке 36 показано распределение систем токсин-антитоксин в разных видах и штаммах бактерий рода *Lactobacillus*. Красным цветом показывается наличие гена, серым – его отсутствие.

Рисунок 36 – Распределение ТА систем RelBE в штаммах Lactobacillus.

На рисунке 36 видно, что распределение генов токсинов и антитоксинов видо- и штаммоспецифично. Наиболее отдаленные виды не имеют пересекающихся генов Т и А. Штаммы, относящиеся к одному виду бактерий, имеют сходный, но не всегда идентичный набор генов Т и А. Распределение ТА систем среди штаммов *L.rhamnosus* на рисунке 36 совпадает с экспериментально проведенными результатами распределения ТА систем (таблица 16, 22). Штаммы *L.rhamnosus* (LOCK908, ATCC8530, Lc705) составляют одну подгруппу, штамм *L.rhamnosus* GG и штамм *L.rhamnosus* LOCK900 имеют совершенно другую комбинацию TA систем. Эти данные соответствуют распределению в таблице 16: штаммы *L.rhamnosus* (ATCC8530, Lc705) входят в одну группу, а штамм *L.rhamnosus* GG в другую.

На основе проведенной аннотации по генам Т и А в секвенированных геномах лактобациллах мы показали, что данные гены можно использовать для идентификации видов и штаммов бактерий рода *Lactobacillus*. Предложенный нами метод видовой и штаммовой идентификации может быть использован как для характеристики отдельных штаммов, так и для характеристики сообщества микроорганизмов, например, в микробиоте человека.

ЗАКЛЮЧЕНИЕ

Была проведена аннотация лабораторной коллекции лактобацилл – определена видовая принадлежность 62-х штаммов по нуклеотидной последовательности гена 16S рРНК. Среди штаммов, выделенных из микробиоты здоровых людей центральной области России, чаще других встречаются виды *L. plantarum*, *L. rhamnosus*, *L. fermentum* и *L. casei*.

ТА системы присутствуют в геномах подавляющего большинства видов бактерий и архей. Они участвуют в различных регуляторных процессах в клетке, в том числе в ответе клетки на стресс. У лактобацилл данные системы практически не изучены. Мы идентифицировали в геномах аннотированных штаммов лактобацилл из GenBank шесть различных TA систем II типа суперсемейства RelBE; два гена токсина соло; одну TA систему, состоящую из двух генов антитоксинов. Методом ПЦР-анализа все эти системы были обнаружены в штаммах лактобацилл из лабораторной коллекции. TA системы суперсемейства RelBE демонстрируют значительный полиморфизм, как геномный, так и генный. Штаммы лактобацилл имеют свой специфический набор генов токсинов и антитоксинов, что позволяет использовать полиморфизм TA систем для характеристики видов и отдельных штаммов. Клонированные гены токсинов четырех TA систем в различной степени подавляли или ограничивали рост модельного объекта для таких исследований *E. coli*, что свидетельствует об их функциональности.

Штаммы отличаются не только наличием и строением ТА систем, но и типом их регуляции. YefM-YoeB Анализ TA системы L.rhamnosus позволил обнаружить участок BOX, предшествующий гену антитоксина, и четыре точки инициации транскрипции. Использованные в работе штаммы L. rhamnosus имели идентичную нуклеотидную последовательность как TA генов, так и окружающих их участков ДНК. Однако у разных штаммов изменение уровня транскрипции при изменении условий роста (по данным RT-PCR) и активность различных сайтов инициации транскрипции (по данным primer extention) были различны. Вероятно, по-разному регулируемые ТА системы участвуют в клеточной регуляторной сети и обеспечивают приспособление различных штаммов лактобацилл к изменяющимся условиям жизни и стрессовым факторам окружающей среды.

Постоянно растущее число описанных ТА систем позволяет предположить, что и в клетках лактобацилл нам известны далеко не все. Разработанный нами алгоритм позволил обнаружить в геномах *L.helveticus* новые гипотетические ТА системы II типа. 3 токсина проявили активность в клетках *E.coli*.

Суммируя наши результаты, можно сказать, что мы впервые описали, исследовали строение и регуляцию ТА систем лактобацилл на примере суперсемейства RelBE и показали возможность использования этих систем для характеристики видов и штаммов лактобацилл.

выводы

1. В аннотированных геномах *L.rhamnosus*, *L.helveticus* и *L.casei* из GenBank *in silico* идентифицированы 6 ТА систем суперсемейства RelBE, два гена токсина *relE* соло и одна система RelBB, состоящая из 2-х генов антитоксинов.

2. Установлено, что штаммы лактобацилл обладают генным и геномным полиморфизмом по ТА системам суперсемейсва RelBE. Распределение ТА систем у лактобацилл видо- и штаммоспецифично и может быть использовано для видовой и штаммовой характеристики.

3. Для TA систем YefM-YoeB_{Lrh}, RelBE3_{Lrh}, RelE1_{Lhv}, RelBE3_{Lhv} показана активность как токсинов, так и антитоксинов в клетках *E.coli*.

4. Показана сложная структурная организация TA системы YefM-YoeB_{Lrh}: обнаружен участок BOX, предшествующий гену антитоксина и 4 предполагаемых промотора в опероне *yefM*-*yoeB_{Lrh}*.

5. Экспрессия TA системы YefM-YoeB_{Lrh} в штаммах *L.rhamnosus* зависит от стадии роста культуры и температуры. Эта зависимость проявляется по-разному в разных штаммах лактобацилл.

6. В 3-х аннотированных геномах *L.helveticus* из GenBank *in silico* выявлено 27 пар генов, относящихся к генам новых гипотетитеских ТА систем II типа. 18 из них были обнаружены в штаммах *L.helveticus* из лабораторной коллекции. Три гена предполагаемых токсинов проявили активность в клетках *E.coli*.

СПИСОК СОКРАЩЕНИЙ, ИСПОЛЬЗОВАННЫХ В РАБОТЕ

ТА система – токсин-антитоксин система

Т – токсин

А – антитоксин

16S РНК - один из трёх основных типов рибосомальной РНК, образующих основу рибосом прокариот, находятся в их малой субъединице; константа седиментации равна 16S (единиц Сведберга)

MRS (MPC) – питательная среда Мозера-Рогоза-Шарпа для работы с чистой культурой и для хранения культур лактобациллах

LB – среда Лурия Бертани

НП – нуклеотидные последовательности

пн – пар нуклеотидов

ДНК – дезоксирибонуклеиновая кислота

РНК – рибонуклеиновая кислота

АТФ - аденозинтрифосфат

ПЦР – полимиразная цепная реакция

ПЦР-РВ – полимиразная цепная реакция в режиме реального времени

НК – нуклеотид

АК – аминокислота

ORF – открытая рамка считывания

IPTG - изопропил-β-D-1-тиогалактопиранозид

OD - оптическая плотность

КОЕ – колониеобразующие единицы

ЖКТ – желудочно-кишечный тракт

СПИСОК ЛИТЕРАТУРЫ

1. Abu Bakar F., Yeo C, Harikrishna J. Expression of the Streptococcus pneumoniae yoeB chromosomal toxin gene causes cell death in the model plant // Arabidopsis thaliana. BMC Biotechnology.- 2015.-15:26.

2. Agarwal S, Mishra NK, Bhatnagar S, Bhatnagar R. PemK toxin of Bacillus anthracis is a ribonuclease: an insight into its active site, structure, and function // J Biol Chem.- 2010.- № 285.- p. 7254–7270.

3. Aizenman E, Engelberg-Kulka H, Glaser G. An Escherichia coli chromosomal "addiction module" regulated by guanosine 3_,5_-bispyrophosphate: a model for programmed bacterial cell death // Proc. Natl. Acad. Sci. USA.- 1996.- №93.- p. 6059–6063.

Bautista-Gallego J, Arroyo-López F, Rantsiou K, Jiménez-Díaz R, Garrido-Fernández A, Cocolin L. Screening of lactic acid bacteria isolated from fermented table olives with probiotic potential // Food Res Int.- 2012.- № 50.- p. 135-142.

5. Bernard P. and Couturier M. Cell killing by the F plasmid CcdB protein involves poisoning of DNA-topoisomerase II complexes // Journal of Molecular Biology.- 1992.-vol. 226.- №.3.- p. 735–745.

6. Bernard P., Couturier M. The 41 carboxy-terminal residues of the miniF plasmid CcdA protein are sufficient to antagonize the killer activity of the CcdB protein // Mol. Gen. Genet.- 1991.- p. 297–304.

7. Bernard, P., Kezdy, K.E., Van Melderen, L., Steyaert, J., Wyns, L., Pato, M.L., et al. The F plasmid CcdB protein induces efficient ATP-dependent DNA cleavage by gyrase // J MolBiol.- 1993, p. 534–541.

8. Besemer J., Lomsadze A., Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions // Nucleic Acids Res.- 2001.- p. 2607-2618.

9. Blower TR, Pei XY, Short FL, Fineran PC, Humphreys DP, Luisi BF, Salmond GP. A processed noncoding RNA regulates an altruistic bacterial antiviral system // Nat Struct Mol Biol.-2011.- №. 18.- p. 185–190.

10. Blower TR, Short FL, Rao F, Mizuguchi K, Pei XY, Fineran PC, Luisi BF & Salmond GPC. Identification and classification of bacterial Type III toxin–antitoxin systems encoded in chromosomal and plasmid genomes // Nucleic Acids Res.- 2012.- № 40.- p. 6158–6173.

11. Brantl S. Bacterial type I toxin-antitoxin systems // RNA Biol.-2012.- № 9.- p. 1488–1490.

12. Bravo J.A., Forsythe P., Chew M.V., Escaravage E., Savignac H.M., Dinan T.G., Bienenstock J., Cryan J.F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve // Proc.Natl.Acad.Sci.- 2011.- № 108.- p.16050-16055.

13. Brown B.L., Grigoriu S., Kim Y., Arruda J.M., Davenport A., Wood T.K., Peti W., Page R. Three dimensional structure of the MqsR:MqsA complex: A novel TA pair comprised of a toxin homologous to RelE and an antitoxin with unique properties // PLoS Pathog.- 2009.- 5:e1000706.

14. Bukowski M, Rojowska A, Wladyka B. Prokaryotic toxin-antitoxin systems--the role in bacterial physiology and application in molecular biology // Acta Biochim Pol.- 2011.- № 58.- p. 1–9.

15. Bukowski M, Lyzen R, Helbin WM, Bonar E, Szalewska-Palasz A, Wegrzyn G, Dubin G, Dubin A, Wladyka B. A regulatory role for Staphylococcus aureus toxin-antitoxin system PemIKSa // Nat Commun.- 2013.- № 4.- p. 2012.

16. Cain AM, Karpa KD. Clinical utility of probiotics in inflammatory bowel disease // Altern Ther Health Med.- 2011.- №17(1).- p. 72-79

17. Camacho AG, Misselwitz R, Behlke J, Ayora S, Welfle K, Meinhart A, et al. In vitro and in vivo stability of the ε2ζ2 protein complex of the broad host-range Streptococcus pyogenes pSM19035 addiction system // Biol Chem.- 2002.- № 383.- 1709–1173.

18. Castro-Roa D., Garcia-Pino A., de Gieter S., van Nuland N.A., Loris R., Zenkin N. The Fic protein Doc uses an inverted substrate to phosphorylate and inactivate EF-Tu // Nat. Chem. Biol.- 2013.- № 9.- p. 811–817.

19. Chan, W.T., Nieto, C., Harikrishna, J.A., Khoo, S.K., et al.. Genetic regulation of the yefM-yoeB toxin-antitoxin locus of Streptococcus pneumonia // J. Bacteriol.-2011.-№193.-p.4612–4625.

20. Cherny I, Gazit E. The YefM antitoxin defines a family of natively unfolded proteins: implications as a novel antibacterial target // J. Biol. Chem.-2004.- № 279.- p.8252–8261.

21. Chono H, Matsumoto K, Tsuda H, Saito N, Lee K, Kim S, Shibata H, Ageyama N, Terao K, Yasutomi Y, et al. Acquisition of HIV-1 resistance in T lymphocytes using an ACA-specific E. coli mRNA interferase // Hum Gene Ther.- 2011.- № 22.- p. 35–43.

22. Christensen SK, Gerdes K. RelE toxins from bacteria and Archaea cleave mRNAs on translating ribosomes, which are rescued by tmRNA // Mol Microbiol.- 2003.- № 48.- p. 1389–1400.

23. Christensen SK, Maenhaut-Michel G, Mine N, Gottesman S, Gerdes K, Van Melderen L. Overproduction of the Lon protease triggers inhibition of translation in Escherichia coli: involvement of the yefM-yoeBtoxin-antitoxin system // Mol. Microbiol.- 2004.- № 51 .- p. 1705–1717.

24. Collins, M.D., Williams, A.M., and Wallbanks, S. The phylogeny of Aerococcus and Pediococcus as determined by 16S rRNA sequence analysis: description of Tetragenococcus gen. nov // FEMS Microbiol. Lett.- 1990.- № 58.- p. 255–262.

25. Delphine MA Saulnier, Jennifer K Spinler, Glenn R Gibson and James Versalovic. Mechanisms of probiosis and prebiosis: considerations for enhanced functional foods // Current Opinion in Biotechnology.- 2009.- № 20.- p. 135–141.

26. Demidenok OI, Kaprelyants AS, Goncharenko AV. Toxin-antitoxin vapBC locus participates in formation of the dormant state in Mycobacterium smegmatis // FEMS Microbiol Lett.- 2014.- №352(1).- p. 69-77.

27. Demidenok OI, Goncharenko AV. Bacterial toxin-antitoxin systems and perspectives for their application in medicine: a review // Prikl Biokhim Mikrobiol.- 2013.- №49(6).- p. 539-546.

28. Dorr T, Vulic M & Lewis K. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli // PLoS Biol.- 2010.- 8: e1000317.

29. Edgar, Robert C. MUSCLE: multiple sequence alignment with high accuracy and high throughput // Nucleic Acids Research. - 2004.- № 32(5).- p. 1792-1797.

30. Engelberg-Kulka H, Hazan R, Amitai S. mazEF: a chromosomal toxin-antitoxin module that triggers programmed cell death in bacteria // J Cell Sci.-2005.- № 118.- p. 4327–4332.

31. Faridani OR, Nikravesh A, Pandey DP, Gerdes K, Good L. Competitive inhibition of natural antisense Sok-RNA interactions activates Hok-mediated cell killing in Escherichia coli // Nucleic Acids Res.- 2006.- 34 (20).

32. Feng Shu, Yun Chen, Katsuhiko Kamada, Han Wang, Kai Tang, Meitian Wang and Yong-Gui Gao. YoeB–ribosome structure: a canonical RNase that requires the ribosome for its specific activity // Nucleic Acids Research.- 2013.- Vol. 41.- №. 20.

33. Fico S, Mahillon J. TasA-tasB, a new putative toxin-antitoxin (TA) system from Bacillus thuringiensis pGI1 plasmid is a widely distributed composite mazE-doc TA system // BMC Genomics.-2006.- №7. p.259

34. Fineran PC, Blower TR, Foulds IJ, Humphreys DP, Lilley KS, Salmond GP. The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair // Proc Natl Acad Sci.- 2009.-№ 106.- p. 894–899.

35. Flint HJ, Scott KP, Louis P, Duncan SH. The role of the gut microbiota in nutrition and health // Nat Rev Gastroenterol Hepatol.-2012.-Sep 4;9(10).-p.577-89.

36. Foster J.A. and McVey Neufeld K.A. Gut–brain axis: how the microbiome influences anxiety and depression // Trends in Neurosciences.- 2013.- Vol. 36.- № 5.- p. 305-312.

37. Fozo EM, Hemm MR, Storz G. Small toxic proteins and the antisense RNAs that repress them // Microbiol. Mol. Biol. Rev.- 2008.- 72 (4).- p. 579–589.

38. Fozo EM, Makarova KS, Shabalina SA, Yutin N, Koonin EV, Storz G. Abundance of type I toxinantitoxin systems in bacteria: searches for new candidates and discovery of novel families // Nucleic Acids Res.- 2010.- № 38.- p. 3743–3759. 39. Georgiades K, Raoult D. Genomes of the most dangerous epidemic bacteria have a virulence repertoire characterized by fewer genes but more toxin–antitoxin modules // PLoS One.- 2011.- 6: e17962.

40. Gerdes K, Bech FW, Jorgensen ST, Lobner-Olesen A, Rasmussen PB, Atlung T, Boe L, Karlstrom O, Molin S, von Meyenburg K. Mechanism of postsegregational killing by the hok gene product of the parB system of plasmid R1 and its homology with the relF gene product of the E. coli relB operon // Embo J.-1986.- 5(8).- p. 2023-2029.

41. Gerdes K, Wagner EG. RNA antitoxins // CurrOpinMicrobiol.- 2007.- №10.- p. 117–124.

42. Gerdes K. Toxin-antitoxin modules may regulate synthesis of macromolecules during nutritional stress // J. Bacteriol.- 200.- 182 (3).- p. 561–572.

43. Germain E., Castro-Roa D., Zenkin N., Gerdes K. Molecular mechanism of bacterial persistence by HipA // Mol. Cell.- 2013.- № 52.- p. 248–254.

44. Giovanna E. Felis and Franco Dellaglio Taxonomy of Lactobacilli and Bifidobacteria Curr. Issues Intest // Microbiol.- 2007.- № 8.- 44-61.

45. Goeders N., Van Melderen L. Toxin-Antitoxin Systems as Multilevel Interaction Systems // Toxins.- 2014.- № 6.- p. 304-324.

46. Grady R, Hayes F. Axe-Txe, a broad-spectrum proteic toxin-antitoxin system specified by a multidrug-resistant, clinical isolate of Enterococcus faecium // Mol Microbiol.- 2003.- № 47.- p. 1419–1432.

47. Guglielmini J, Van Melderen L. Bacterial toxin-antitoxin systems: Translation inhibitors everywhere // Mob Genet Elements.- 2011.- № 1.- p. 283–290.

48. Gupta A. Killing activity and rescue function of genome-wide toxin-antitoxin loci of Mycobacterium tuberculosis // FEMS Microbiol Lett.- 2009.- 290(1).- p. 45-53.

49. Halvorsen E.M., Williams J.J., Bhimani A.J., Billings E.A., Hergenrother P.J. Txe, an endoribonuclease of the enterococcal Axe–Txe toxin–antitoxin system, cleaves mRNA and inhibits protein synthesis // Microbiology.- 2011.-Feb; 157(Pt 2).-p.387–397.

50. Hammes, W. P., Vogel R. F. The genus *Lactobacillus* // The genera of lactic acid bacteria, vol. 2. Blackie Academic and Professional, London, United Kingdom.- 1995.- Vol. 2.- p. 19-54

51. Hazan R, Engelberg-Kulka H. Escherichia coli mazEF-mediated cell death as a defense mechanism that inhibits the spread of phage P1 // Mol Genet Genomics.- 2004.- № 272.- p. 227–234.

52. Holberger L.E., Garza-Sánchez F., Lamoureux J., Low D.A., Hayes C.S. A novel family of toxin/antitoxin proteins in *Bacillus* species // FEBS Lett.-2012.-Jan 20; 586(2).-p.32–136.

53. Holzapfel WH, Haberer P, Snel J, Schillinger U. Overview of gut flora and probiotics // Int J Food Microbiol.- 1998.- № 41.- p. 85-101.

54. Hu Y., Benedik M.J., Wood T.K. Antitoxin DinJ influences the general stress response through transcript stabilizer CspE. Environ // Microbiol.- 2012.- № 14.- p. 669–679.

55. Huang C.-H., Chang M.-T., Huang M.-C., Lee F.-L. Rapid identification of Lactobacillus plantarum group using the SNaPshort minisequencing // Systematic and applied microbiology.- 2011.- № 34.- p. 586-589.

56. Huang C.-H., Lee F.-L. The dnaK gene as a molecular marker for the classification and discrimination of the Lactobacillus casei group // Antonie van Leeuwenhoek.- 2011.- № 99.- p. 319-327.

57. Hurley JM, Woychik N. Bacterial toxin HigB associates with ribosomes and mediates translationdependent mRNA cleavage at A-rich sites // J Biol Chem./ 2009.- № 284.- p. 18605–18613.

58. Inouye S., Nariya H. Dual regulation with Ser/Thr kinase cascade and a His/Asp TCS in Myxococcus xanthus // Adv Exp Med Biol.- 2008.- № 631.- p. 111-121

59. Jaffé, A., Ogura, T. and Hiraga, S. Effects of the ccd function of the F plasmid on bacterial growth // J Bacteriol.- 1985.- № 163.- p. 841–849.

60. Jones P. et al. InterProScan 5: genome-scale protein function classification // Bioinformatics.-2014.- 30(9) .- p. 1236-1240.

61. Jorgensen MG, Pandey DP, Jaskolska M, Gerdes K. HicA of Escherichia coli defines a novel family of translation-independent mRNA interferases in bacteria and archaea // J Bacteriol.-2009.- № 191.- p. 1191–1199.

62. Kadioglu A, Weiser JN, Paton JC, Andrew PW. The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease // Nat Rev Microbiol.- 2008.- № 6. – p. 288–301.

63. Kamada K, Hanaoka F. Conformational change in the catalytic site of the ribonuclease YoeB toxin by YefM antitoxin // Mol. Cell.- 2005.- № 19.- p. 497–509.

64. Kelsen JR, Wu GD. The gut microbiota, environment and diseases of modern society // Gut Microbes.-2012.- №3(4).- p. 374-382.

65. Keren I, Shah D, Spoering A, Kaldalu N, Lewis K. Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli // J Bacteriol.- 2004.- № 186.- p. 8172–8180.

66. Khoo SK, Loll B, Chan WT, Shoeman RL, Ngoo L, et al. Molecular and structural characterization of the PezAT chromosomal Toxin-Antitoxin system of the human pathogen Streptococcus pneumonia // J Biol Chem.- 2007.- № 282.- p. 19606–19618.

67. Knutsen, E., Johnsborg, O., Quentin, Y., Claverys, J.P., et al. BOX elements modulate gene expression in Streptococcus pneumoniae: impact on the fine-tuning of competence development //J. Bacteriol.-2006. №188.-p.8307–8312.

68. Ko C.Y., Lin H.-T.V., Tsai G.J. Gamma-aminobutyric acid production in black soybean milk by Lactobacillus brevis FPA 3709 and the antidepressant effect of the fennented product on a forced swimming rat model // Process Biochem.- 2013.- № 48(4).- p. 559-568.

69. Koga M., Otsuka Y., Lemire S. and Yonesaki T. Escherichia coli rnlA and rnlB compose a novel toxin-antitoxin system // Genetics.-2011.-№187.- p. 123-130.

70. Kolodkin-Gal I, Hazan R, Gaathon A, Carmeli S, Engelberg-Kulka H. A linear penta-peptide is a quorum sensing factor required for mazEF-mediated cell death in Escherichia coli // Science.- 2007.- № 318.- p. 652–655.

71. Krasnov, G.S., et al. RPN1, a new reference gene for quantitative data normalization in lung and kidney cancer // Molecular Biology.- 2011.- №45(2).- p. 211-220.

72. Kumar S., Kolodkin-Gal I., Engelberg-Kulka H. Novel quorum-sensing peptides mediating interspecies bacterial cell death // mBio.- 2013.- Vol. 4.- № 3.- e00314-13

73. Lane D. J. 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics // Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley.- 1991.- p. 115–175.

74. Lee J., Jang J., Kim B., Kim J., Jeong G., Han H. Identification of Lactobacillus sakei and Lactobacillus curvatus by multiplex PCR-based restriction enzyme analysis // Journal of Microbiological Methods.- 2004.- № 59.- p. 1–6.

75. Lehnherr, H., and Yarmolinsky, M.B. Addiction protein Phd of plasmid prophage P1 is a substrate of the ClpXP serine protease of Escherichia coli // ProcNatlAcadSci.- 1995. - № 92.- p. 3274–3277.

76. Leplae R., Geeraerts D., Hallez R., Guglielmini J., Drèze P., van Melderen L. Diversity of bacterial type II toxin-antitoxin systems: A comprehensive search and functional analysis of novel families // Nucleic Acids Res.- 2011.- № 39.- p. 5513–5525.

77. Lin C.-Y., Awano N., Masuda H., Park J.-H., Inouye M. Transcriptional repressor HipB regulates the multiple promoters in *Escherichia coli* // J. Mol. Microbiol. Biotechnol.- 2013.- № 23.- p. 440–447.

78. Liu M, Zhang Y, Inouye M, Woychik NA. Bacterial addiction module toxin Doc inhibits translation elongation through its association with the 30S ribosomal subunit // Proc Natl Acad Sci.-2008.- № 105.- p. 5885–5890.

79. Maisonneuve E, Shakespeare LJ, Jørgensen MG, Gerdes K. Bacterial persistence by RNA endonucleases // Proc Natl Acad Sci.- 2011.- № 108.- 13206–13211.

80. Makarova K. S., Wolf Y. I., and Koonin E. V. Comprehensive comparative-genomic analysis of type 2 toxinantitoxin systems and related mobile stress response systems in prokaryotes // Biology Direct.- 2009.- Vol. 4.- article 19.

81. Markiewicz L.H., Biedrzycka E., Wasilewska E., Bielecka M. Rapid molecular identification and characteristics of Lactobacillus strains // Folia Microbiol.- 2010.- № 55, p. 481-488.

82. Masuda H, Tan Q, Awano N, Wu KP, Inouye M. YeeU enhances the bundling of cytoskeletal polymers of MreB and FtsZ, antagonizing the CbtA (YeeV) toxicity in Escherichia coli // Mol Microbiol.-2012.- № 84.- p. 979–989.

83. Masuda H, Tan Q, Awano N, Yamaguchi Y, Inouye M. A novel membrane-bound toxin for cell division, CptA (YgfX), inhibits polymerization of cytoskeleton proteins, FtsZ and MreB, in Escherichia coli // FEMS Microbiol Lett.- 2012.- № 328.- 174–181.

84. Messaoudi M., Violle N., Bisson J.-F., Desor D., Javelot H., Rougeot C. Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers // Gut Microbes.- 2011.- №2(4).- p. 256-261.

85. Miller S The structure of interfaces between subunits of dimeric and tetrameric proteins // Protein Eng.- 1989.- № 3.- p. 77–83.

86. Moll I., Engelberg-Kulka H. Selective translation during stress in Escherichia coli //Trends Biochem Sci.- 2012.- №37(11).- p. 493-498.

87. Moloney R.D., Desbonnet L., Clarke G., Dinan T.G., Cryan J.F. The microbiome: stress, health and disease // Mamm Genome.- 2014.- № 25.- p. 49-74.

88. Monteagudo-Mera A, Rodríguez-Aparicio L, Rúa J, Martínez-Blanco H, Navasa N, García-Armesto MR, et al. In vitro evaluation of physiological probiotic properties of different lactic acid bacteria strains of dairy and human origin // J Funct Foods.- 2012.- № 4.- p. 531-541.

89. Moritz EM & Hergenrother PJ. Toxin–antitoxin systems are ubiquitous and plasmid-encoded in vancomycin-resistant enterococci // P Natl Acad Sci.- 2007.- № 104.- p. 311–316.

90. Muñoz-Gómez AJ, Lemonnier M, Santos-Sierra S, Berzal-Herranz A, Díaz-Orejas R. RNase/anti-RNase activities of the bacterial parD toxin-antitoxin system // J Bacteriol.- 2005.- № 187.- p. 3151– 3157.

91. Mutschler H & Meinhart A. E/Z Systems: their role in resistance, virulence, and their potential for antibiotic development // J Mol Med (Berl).- 2011.- № 89.- p. 1183–1194.

92. Mutschler H, Gebhardt M, Shoeman RL, Meinhart A. A novel mechanism of programmed cell death in bacteria by toxin-antitoxin systems corrupts peptidoglycan synthesis // PLoS Biol.- 2011; 9:e1001033.

93. Neubauer C, Gao YG, Andersen KR, Dunham CM, Kelley AC, Hentschel J, Gerdes K, Ramakrishnan V, Brodersen DE. The structural basis for mRNA recognition and cleavage by the ribosome-dependent endonuclease RelE // Cell.- 2009.- № 139.- p. 1084–1095.

94. Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S. Host-gut microbiota metabolic interactions // Science.- 2012.- № 336(6086).- p. 1262-1267.

95. Nieto C, Cherny I, Khoo SK, de Lacoba MG, Chan WT, et al. The yefM-yoeB toxin-antitoxin systems of Escherichia coli and Streptococcus pneumoniae: functional and structural correlation // J Bacteriol.- 2007.- № 189.- p. 1266–1278.

96. Nieto C, Pellicer T, Balsa D, Christensen SK, Gerdes K, et al. The chromosomal relBE2 toxinantitoxin locus of Streptococcus pneumoniae: character- ization and use of a bioluminescence resonance energy transfer assay to detect toxin-antitoxin interaction // Mol Microbiol.- 2006.- № 59.- p. 1280–1296.

97. Nieto C, Sadowy E, de la Campa AG, Hryniewicz W, Espinosa M. The relBE2Spn Toxin-Antitoxin System of Streptococcus pneumoniae: Role in Antibiotic Tolerance and Functional Conservation in Clinical Isolates // PLoS ONE.- 2010.- №5(6): e11289.

98. Ogura T, Hiraga S. Mini-F plasmid genes that couple host cell division to plasmid proliferation // Proc Natl Acad Sci.- 1983.- 80(15).- p. 4784-4788.

99. Pandey DP, Gerdes K. Toxin-antitoxin loci are highly abundant in free-living but lost from hostassociated prokaryotes // Nucleic Acids Res.- 2005.- № 33.- p. 966–976.

100. Park Jung-Ho, Yamaguchi Yoshihiro, Inouye Masayori. Bacillus subtilis MazF-bs (EndoA) is a UACAU-specific mRNA interferase // FEBS Lett.- 2012.- Vol. 585.- p. 2526-2532.

101. Park SJ, Son WS, Lee BJ. Structural overview of toxin-antitoxin systems in infectious bacteria: a target for developing antimicrobial agents // Biochim Biophys Acta.- 2013.- № 1834.- p. 1155–1167.

102. Pellegrini O, Mathy N., Gogos G., Shapiro L., Condon C. The Bacillus subtilis ydcDE operon encodes an endoribonuclease of the MazF/PemK family and its inhibitor // Mol Microbiol. – 2005. – Jun_56(5) – p.1139-48.

103. Połom D., Boss L., Wezgrzyn G., Hayes F. and Kezdzierska B. Amino acid residues crucial for specificity of toxin–antitoxin interactions in the homologous Axe–Txe and YefM–YoeB complexes // FEBS Journal.–2013.–280–p. 5906–5918.

104. Pot B., Felis G., De Bruyne K., Tsakalidou E., Papadimitriou K., Leisner J. and Vandamme P. Lactic Acid Bacteria: Biodiversity and Taxonomy // Editor(s): Wilhelm H. Holzapfel, Brian J.B. // Wiley-Blackwell. 2014.

105. Prozorov AA, Danilenko VN. Toxineantitoxin systems in bacteria: apoptotic tools or metabolic regulators // Microbiology.- 2010.- № 79.- p. 129-140.

106. Raftis E., Salvetti E., Torriani S., Felis G.E., O'Toole P.W. Genomic diversity of Lactobacillus salivarius // Appl. Environ. Microbiol.- 2011, vol. 77, № 3, p. 954-965.

107. Ramage H.R., Connolly L.E., Cox J.S. Comprehensive functional analysis of Mycobacterium tuberculosis toxin-antitoxin systems: implications for pathogenesis, stress responses, and evolution // PLoS Genetics.- 2009.-5(12):e1000767.

108. Rao A.V., Bested A.C., Beaulne T.M., Katzman M.A., Iorio C., Berardi J.M., Logan A.C. A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome // Gut Pathogens.- 2009.- N 19.-p.1 – 6.

109. Ren D, Walker AN & Daines D. Toxin–antitoxin loci vapBC-1 and vapXD contribute to survival and virulence in nontypeable Haemophilus influenza // BMC Microbiol.- 2012.- № 12.- p. 263.

110. Sadeghifard N, Soheili S, Sekawi Z, Ghafourian S. Is the mazEF toxin-antitoxin system responsible for vancomycin resistance in clinical isolates of Enterococcus faecalis? // GMS Hyg Infect Control.- 2014.- 9(1).

111. Saito S., Kobayashi M., Kimoto-Nira H., Aoki R., Mizumachi K., Miyata S., Yamamoto K., Kitagawa Y., Suzuki C. Intraspecies discrimination of Lactobacillus paraplantarum by PCR // FEMS Microbiology Letters.- 2011.- № 316.- p. 70-76.

112. Sala A., Bordes P., Genevaux P. Multiple Toxin-Antitoxin Systems in Mycobacterium tuberculosis // Toxins.- 2014.- 6(3).- p. 1002-1020.

113. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual // New York: Cold Spring Harbour.- 1989.- 2 ed.

114. Sanders M, Klaenhammer T. Invited review: the scientific basis of Lactobacillus acidophilus NCFM functionality as a probiotic // J Dairy Sci.- 2001.- № 84.- p. 319-331.

115. Santos-Sierra S., Pardo-Abarrio C., Giraldo R., Díaz-Orejas R. Genetic identification of two functional regions in the antitoxin of the parD killer system of plasmid R1 // FEMS Microbiol. Lett.-2002.- № 206.- p. 115–119.

116. Sat B, Hazan R, Fisher T, Khaner H, Glaser G, Engelberg-Kulka H. Programmed cell death in Escherichia coli: some antibiotics can trigger mazEF lethality// J Bacteriol.- 2001.- № 183.- p. 2041–2045.

117. Sayeed S, Reaves L, Radnedge L & Austin S. The stability region of the large virulence plasmid of Shigella flexneri encodes an efficient postsegregational killing system // J Bacteriol.- 2000.- № 182.- p. 2416–2421.

118. Sberro H, Leavitt A, Kiro R, Koh E, Peleg Y, Qimron U, Sorek R. Discovery of functional toxin/antitoxin systems in bacteria by shotgun cloning // Mol Cell.- 2013.- № 50.- p. 136–148.

119. Schmidt O, Schuenemann VJ, Hand NJ, Silhavy TJ, Martin J, Lupas AN, Djuranovic S. prlF and yhaV encode a new toxin-antitoxin system in Escherichia coli // J Mol Biol.- 2007.- № 372.- p. 894–905.

120. Schumacher MA, Piro KM, Xu W, Hansen S, Lewis K, Brennan RG. Molecular mechanisms of HipA-mediated multidrug tolerance and its neutralization by HipB // Science.- 2009.- № 323.- p. 396–401.

121. Schuster F. Christopher, Jung-Ho Park, Marcel Prax, Alexander Herbig, Kay Nieselt, Ralf Rosenstein, Masayori Inouye, Ralph Bertram. Characterization of a mazEF Toxin-Antitoxin Homologue from Staphylococcus equorum // J Bacteriol.- 2013.- 195(1).- p. 115–125.

122. Senchenko, V.N., et al., Differential expression of CHL1 gene during development of major human cancers // PLoS One.- 2011.- 6(3).- e15612.

123. Sevillano L, Diaz M, Yamaguchi Y, Inouye M, Santamaria RI. Identification of the first functional toxin-antitoxin system in Streptomyces // PLoS One.- 2012.- 7.- e32977.

124. Sevin E.W., Barloy-Hubler F. RASTA-bacteria: a web-based tool for identifying toxin-antitoxin loci in prokaryotes // Genome Biology.- 2007.- 8(8).- R155.

125. Shao Y, Harrison EM, Bi D, Tai C, He X, Ou H-Y, Rajakumar K, Deng Z. TADB: a web-based resource for Type 2 toxin– antitoxin loci in bacteria and archaea // Nucleic Acids Res.- 2011.- Vol 39.- p. 606–611.

126. Shapira A, Shapira S, Gal-Tanamy M, Zemel R, Tur-Kaspa R & Benhar I. Removal of hepatitis C virus-infected cells by a zymogenized bacterial toxin // PLoS One.- 2012.- № 7.- e32320.

127. Shi Wanliang, Xuelian Zhang, Xin Jiang, Haiming Ruan, Clifton E. Barry, Honghai Wang, Wenhong Zhang, Ying Zhang. Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis: a potential mechanism for shortening the duration of tuberculosis chemotherapy // Science.- 2011.-333(6049).- p. 1630–1632.

128. Sievers M, Uermösi C, Fehlmann M, Krieger S. Cloning, sequence analysis and expression of the F1F0-ATPase beta-subunit from wine lactic acid bacteria // Syst. Appl. Microbiol. – 2003.- vol. 26.- № 3.- p. 350-356.

129. Siguier P, Filée J, Chandler M. Insertion sequences in prokaryotic genomes // Curr. Opin. Microbiol.- 2006.- № 9.- p. 526-531.

130. Singh P.K., Chopra K., Kuhad A., Kaur I.P. Role of Lactobacillus acidophilus loaded floating beads in chronic fatigue syndrome: behavioral and biochemical evidences // Neurogastroenterol Motil.-2012.- № 24.- p. 366.

131. Singh S., Goswami P., Singh R., Heller K.J. Application of molecular identification tools for Lactobacillus, with a focus on discrimination between closely related species: a review // LWT – Food science and technology.- 2009.- № 42.- p. 448-457.

132. Smith AS, Rawlings DE. The poison-antidote stability system of the broad-host-range Thiobacillus ferrooxidans plasmid pTF-FC2 // Mol. Microbiol.- 1997.- № 26.- p. 961–970.

133. Smith J.A., Magnuson R.D. Modular organization of the Phd repressor/antitoxin protein // J. Bacteriol.- 2004.- № 186.- p. 2692–2698.

134. Song, Y., Kato, N., Liu, C., Matsumiya, Y., Kato, H., Watanabe, K. Rapid identification of 11 human intestinal Lactobacillus species by multiplex PCR assays using group and species-specific primers derived from the 16S–23S rRNA intergenic spacer region and its flanking 23S rRNA // FEMS Microbiology Letters.- 2000.- № 187.- p. 167–173;

135. Soo V.W., Wood T.K. Antitoxin MqsA represses curli formation through the master biofilm regulator CsgD // Sci. Rep.- 2013.- № 3.- p. 3186.

136. Stevens, M.J., Molenaar, D., de Jong, A., De Vos, W.M. Sigma54-Mediated control of the mannose phosphotransferase system in *Lactobacillus plantarum* impacts on carbohydrate metabolism. Microbiology. – 2010.-№156.-p. 695–707

137. Szekeres S, Dauti M, Wilde C, Mazel D, Rowe-Magnus DA. Chromosomal toxin-antitoxin loci can diminish large-scale genome reductions in the absence of selection // Mol Microbiol.- 2007.- № 63.- p. 1588–1605.

138. Tam, J.E., and Kline, B.C. Control of the ccd operon in plasmid F // J Bacteriol.- 1989.- № 171.p. 2353–2360.

139. Tamura K, Peterson D., Peterson N., Stecher G., Nei M., and Kumar S. MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods // Mol. Biol. Evol.-2011.- 28(10).- p. 2731–2739.

140. Tan Q, Awano N, Inouye M. YeeV is an Escherichia coli toxin that inhibits cell division by targeting the cytoskeleton proteins, FtsZ and MreB// Mol. Microbiol.- 2011.- № 79.- p. 109–118.

141. Tannock, G. W. Normal microflora: an introduction to microbes inhabiting the human body // Chapman and Hall.- 1995.

142. Theunissen S, De Smet L, Dansercoer A, Motte B, Coenye T, Van Beeumen JJ, Devreese B, Savvides SN, Vergauwen B. The 285 kDa Bap/RTX hybrid cell surface protein (SO4317) of Shewanella oneidensis MR-1 is a key mediator of biofilm formation // Res Microbiol.- 2010.- № 161.- p. 144–152.

143. Tian QB, Ohnishi M, Murata T, Nakayama K, Terawaki Y, Hayashi T. Specific protein-DNA and protein-protein interaction in the hig gene system, a plasmid-borne proteic killer gene system of plasmid Rts1 // Plasmid.- 2001.- № 45.- p. 63–74.

144. Torriani S., Felis G.E., Dellaglio F. Differentiation of Lactobacillus plantarum, L.pentosus, and L. paraplantarum by recA gene sequence analysis and multiplex PCR assay with recA gene-derived primers // Appl. Env. Microbiol.- 2001.- Vol. 67.- № 8.- p. 3450–3454.

145. Trovatti E, Cotrim CA, Garrido SS, Barros RS & Marchetto R (2008) Peptides based on CcdB protein as novel inhibitors of bacterial topoisomerases. Bioorg Med Chem Lett 18: 6161–6164.

146. Tsilibaris V, Maenhaut-Michel G, Mine N, Van Melderen L. What is the benefit to Escherichia coli of having multiple toxin-anti- toxin systems in its genome? // J Bacteriol.- 2007.- № 189.- p. 6101–6108.

147. Tsuchimoto, S., Nishimura, Y., and Ohtsubo, E. The stable maintenance system pem of plasmid R100: degradation of PemI protein may allow PemK protein to inhibit cell growth // J Bacteriol.- 1992.-№ 174.- p. 4205–4211.

148. Turroni F., Ventura M., Buttó L.F., Duranti S., O'Toole P.W., O'Connell Motherway M., · Douwe van Sinderen D. Molecular dialogue between the human gut microbiota and the host: a Lactobacillus and Bifidobacterium perspective // Cell. Mol. Life Sci.- 2014.- № 71.- p. 183–203.

149. Unterholzner SJ, Hailer B, Poppenberger B, Rozhon W. Characterisation of the stbD/E toxinantitoxin system of pEP36, a plasmid of the plant pathogen Erwinia pyrifoliae // Plasmid.- 2013.- № 70.p. 216–225.

150. Unterholzner SJ, Poppenberger B, Rozhon W. Toxin-antitoxin systems: Biology, identification, and application // Mobile Genetic Elements.- 2013.- 3:e26219.

151. Van Mederen, de Bast. Bacterial Toxin–Antitoxin Systems: More Than Selfish Entities? // PLoS Genetics.- 2009.- 5(3).-e1000437.

152. Van Melderen, L., Bernard, P., and Couturier, M. Lon-dependent proteolysis of CcdA is the key control for activation of CcdB in plasmid-free segregantbacteria // MolMicrobiol.- 1994.- № 11.- p. 1151–1157.

153. Wang CY, Lin PR, Ng CC, Shyu YT. Probiotic properties of Lactobacillus strains isolated from the feces of breast-fed infants and Taiwanese pickled cabbage // Anaerobe.- 2010.- № 16.- p. 578-585.

154. Wang X, Lord DM, Cheng HY et al. A novel type V TA system where mRNA for toxin GhoT is cleaved by antitoxin GhoS // Nat Chem Biol.- 2013.- № 8.- p. 855–861.

155. Wang X, Lord DM, Cheng HY, Osbourne DO, Hong SH, Sanchez-Torres V, Quiroga C, Zheng K, Herrmann T, Peti W, et al. A new type V toxin-antitoxin system where mRNA for toxin GhoT is cleaved by antitoxin GhoS // Nat Chem. Biol.- 2012.- № 8.- p.855–861.

156. Wang X, Wood TK. Toxin-antitoxin systems influence biofilm and persister cell formation and the general stress response // Appl. Environ Microbiol.- 2011.- № 77.- p. 5577–5583.

157. Wen Y, Behiels E, Devreese B. Toxin–Antitoxin systems: their role in persistence, biofilm formation, and pathogenicity // Pathog. Dis.- 2014.- 70(3).- p. 240-249.

158. Williams J. Julia, Elizabeth M. Halvorsen, Ellen M. Dwyer, Robert M. DiFazio, Paul J. Hergenrother. Toxin-Antitoxin (TA) Systems are Prevalent and Transcribed in Clinical Isolates of Pseudomonas aeruginosa and Methicillin-Resistant Staphylococcus aureus // FEMS Microbiol Lett.-2011.- 322(1).- p. 41–50.

159. Williams JJ, Hergenrother PJ. Artificial activation of toxin-antitoxin systems as an antibacterial strategy // Trends Microbiol.- 2012.- № 20.- p. 291–298.

160.Williams J.J. and Hergenrother P.J. Detection of Endogenous MazF Enzymatic Activity in Staphylococcus aureus // Anal Biochem.- 2013.- 443(1).-p.81-7

161. Winther KS, Gerdes K. Enteric virulence associated protein VapC inhibits translation by cleavage of initiator tRNA // Proc. Natl. Acad. Sci.- 2011.- № 108.- p. 7403–7407.

162. Wozniak RA & Waldor MK. A toxin-antitoxin system promotes the maintenance of an integrative conjugative element // PLoS Genet.- 2009.- 5.- e1000439

163.Yamaguchi Y, Nariya H, Park JH, Inouye M. Inhibition of specific gene expressions by proteinmediated mRNA interference // Nat Commun.- 2012.- № 3.- p. 607.

164. Yamaguchi Y, Park JH, Inouye M. MqsR, a crucial regulator for quorum sensing and biofilm formation, is a GCU-specific mRNA interferase in Escherichia coli // J Biol. Chem.- 2009.- № 284.- p. 28746–28753.

165. Yamaguchi, Y., Park, J.-H., Inouye, M. Toxin-antitoxin systems in bacteria and archea //Annu. Rev. Genet.-2011.-№45.-p.61–79.

166. Yang M, Gao C, Wang Y, Zhang H, He Z-G. Characterization of the Interaction and Cross-Regulation of Three Mycobacterium tuberculosis RelBE Modules // PLoS ONE.- 2010.- 5(5).-e10672.

167. Yoshizumi S, Zhang Y, Yamaguchi Y, Chen L, Kreiswirth BN, Inouye M. Staphylococcus aureus YoeB Homologues Inhibit Translation Initiation // J Bacteriol.- 2009.- 191(18).- p. 5868–5872.

168. Young V.B. The intestinal microbiota in health and disease // Opin. Gastroenterol.- 2012.- № 28.p. 63-69.

169. Yuan J., Sterckx Y., Mitchenall L.A., Maxwell A., Loris R., Waldor M.K. Vibrio cholerae ParE2 poisons DNA gyrase via a mechanism distinct from other gyrase inhibitors // J. Biol. Chem.- 2010.- № 285.- p. 40397–40408.

170. Zhang Y, Inouye M. RatA (YfjG), an Escherichia coli toxin, inhibits 70S ribosome association to block translation initiation // Mol Microbiol.- 2011.- № 79.- p. 1418–1429.

171. Zhang Y, Inouye M. The inhibitory mechanism of protein synthesis by YoeB, an Escherichia coli toxin // J. Biol. Chem.- 2009.- № 284.- p. 6627–6638.

172. Zhang Y, Zhang J, Hoeflich KP, Ikura M, Qing G, Inouye M. MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli // Mol Cell.- 2003.- № 12.- p. 913–923.

173. Zhang Y, Zhu L, Zhang J, Inouye M. Characterization of ChpBK, an mRNA interferase from Escherichia coli // J Biol. Chem.- 2005.- № 280.- 26080–26088.

174. Zhu L, Inoue K, Yoshizumi S, Kobayashi H, Zhang Y, Ouyang M, Kato F, Sugai M, Inouye M. Staphylococcus aureus MazF specifically cleaves a pentad sequence, UACAU, which is unusually abundant in the mRNA for pathogenic adhesive factor SraP // J Bacteriol.- 2009.- № 191.- p. 3248–3255.

175. Zhu L., Jared D. Sharp, Hiroshi Kobayashi, Nancy A. Woychik, Masayori Inouye. Noncognate Mycobacterium tuberculosis Toxin-Antitoxins Can Physically and Functionally Interact // J Biol Chem.- 2010.- 285(51).- p. 39732–39738.

176. Миллер Дж. Эксперименты в молекулярной генетике. пер. с англ.: Ю. Н. Зограф; под.ред. и с предисл. С. И. Алиханян. – М. : Мир, 1976. – 436 с.

177. Полуэктова Е.У., Даниленко В.Н. Метод видовой и штаммовой идентификации лактобацилл, основанный на использовании проксимального межгенного участка ДНК оперона F1F0 АТФ-синтазы // Международная заявка на патент №2012103277, 2013.

Приложение А

Последовательность гена 16SRNA штаммов из лабораторной коллекции

N⁰	Видовая	Название	Последовательность гена 168 РНК
п/п	идентификац	штамма	
	ия штамма		
	(16S PHK)		
1	I alastassa	00.200	
1.	L. plantarum	CS 396	
			GTAATCGGCCACATTGGGACTGAGACACGGCCCCAAACTCCTACGGGAGGCAGCAGCAGGAATCTTCCACAATGGACGAAAGTCTGA
			TGGAGCAACGCCGCGTGAGTGAAGAAGGGTTTCGGCTCGGTAAAACTCTGTTGTTAAAGAAGAACATATCTGAGAGAGTAACTGTTCAGG
			TATTGACGGTATTTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTA
			TTGGGCGTAAAGCGAGCGCAGGCGGTTTTTTAAGTCTGATGTGAAAGCCTTCGGCTCAACCGAAGAAGTGCATCGGAAACTGGGAAA
			CTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTGAAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTG
			TCTGGTCTGTAACTGACGCTGAGGCTCGAAAGTATGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCATACCGTAAACGATGAAT
			GCTAAGTGTTGGAAGGGTTTCCGCCCTTCAGTGCTGCAGCTAACGCATTAAGCATTCCNCCTGGGGANTACGG
2.	L. plantarum	8-PA-3	CTCTGGTATTGATTGGTGCTTGCATCATGATTTACATTTGAGTGAG
	1		CGGGGGGATAACACCTGGAAACAGATGCTAATACCGCATAACAACTTGGACCGCATGGTCCGAGCTTGAAAGATGGCTTCGGCTATCA
			CTTTTGGATGGTCCCGCGGCGTATTAGCTAGATGGTGGGGTAACGGCTCACCATGGCAATGATACGTAGCCGACCTGAGAGGGTAAT
			CGGCCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACAATGGACGAAAGTCTGATGGAG
			CAACGCCGCGTGAGTGAAGAAGGGTTTCGGCTCGTAAAACTCTGTTGTTAAAGAAGAACATATCTGAGAGTAACTGTTCAGGTATTG
			ACGGTATTTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGG
			CGTAAAGCGAGCGCAGGCGGTTTTTTTAAGTCTGATGTGAAAGCCTTCGGCTCAACCGAAGAAGTGCATCGGAAACTGGGAAACTTGA
2	T 1 /	00 TC 4	
3.	L. plantarum	90-1C-4	
			GACGAAAGTCTGATGGAGCAACGCCGCGTGAGTGAAGAAGGGTTTCGGCTCGTAAAACTCTGTTGTTAAAGAAGAACATATCTGAGA
			GTAACTGTTCAGGTATTTGACGGTATTTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCG
			TTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTTTTAAGTCTGATGTGAAAGCCTTCGGCTCAACCGAAGAAGTGCATC
			GGAAACTGGGAAACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTGAAATGCGT
4.	L. plantarum	гКНМ 101	ATGCAGTCGAACGAACTCTGGTATTGATTGGTGCTTGCATCATGATTTACATTTGAGTGAG
••	P 1011101 1111		GAAACCTGCCCAGAAGCGGGGGGATAACACCTGGAAACAGATGCTAATACCGCATAACAACTTGGACCGCATGGTCCGAGCTTGAAAG
			ATGGCTTCGGCTATCACTTTTGGATGGTCCCGCGGCGTATTAGCTAGATGGTGGGGTAACGGCTCACCATGGCAATGATACGTANCC

			GACCTGAGAGGGTAATCNGCCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACAATGGA
			CGAAAGTCTGATGGANCAACGCCNCGTGAGTGAAGAAGGGTTTCGGCTCGTAAAACTCTGTTGTTAAAGAAGAACATATCTGANAGT
			AACTGTTCAGGTATTGACGGTATTTAACCAGAAAGCCACGGCTAACTACGTGCCANCAGCCGCGGTAATACNTANGTGGCAAGCGTT
			GTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTTTTAAGTCTGATGTGAAAGCCTTCGGCTCAACCGAANAAGTGCATCNG
			AAACTGGGAAACTTGAGTGCANAAGAGGACAGTGNAACTCCNTGTGTAGCGGTGAAATGCGTAGATATATGGAAGAACACCAGTGGC
			GAAGGCGGCTGTCTGGTCTGTAACTGACGCTGAGGCTCNAAAGTATNGGTAGCAAACAGGNATTANATACCCTGGTNAGTCCATACC
			GTAAACGATGAATGCTAAGTGTTGGAGGGNTTCCNCCCTTCA
.5.	L. plantarum	K9L	ATACATGCAAGTCGAACGAACTCTGGTATTGATTGGTGCTTGCATCATGATTTACATTTGAGTGAG
0.		10/2	GTGGGAAACCTGCCCAGAAGCGGGGGGATAACACCTGGAAACAGATGCTAATACCGCATAACAACTTGGACCGCATGGTCCGAGTTTG
			AAAGATGGCTTCGGCTATCACTTTTGGATGGTCCCGCGGCGTATTAGCTAGATGGTGGGGTAACGGCTCACCATGGCAATGATACGT
			AGCCGACCTGAGAGGGTAATCGGCCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACAA
			TGGACGAAAGTCTGATGGAGCAACGCCGCGTGAGTGAAGAAGGGTTTCGGCTCGTAAAACTCTGTTGTTAAAGAAGAACATATCTGA
			GAGTAACTGTTCAGGTATTGACGGTATTTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAG
			CGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTTTTAAGTCTGATGTGAAAGCCTTCGGCTCAACCGAAGAAGTGCA
			TCGGAAACTGGGAAACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTGAAATGCGTAGATATATGGAAGAACACCAG
			TGGCGAAGGCGGCTGTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGTATGGGTAGCAAACAGGATTAGATACCCTGGTAGTCC
6.	L. plantarum	46к	ATACATGCAAGTCGAACGAACTCTGGTATTGATTGGTGCTTGCATCATGATTTACATTTGAGTGAG
			GTGGGAAACCTGCCCAGAAGCGGGGGATAACACCTGGAAACAGATGCTAATACCGCATAACAACTTGGACCGCATGGTCCGAGCTTG
			AAAGATGGCTTCGGCTATCACTTTTGGATGGTCCCGCGGCGTATTAGCTAGATGGTGGGGGTAACGGCTCACCATGGCAATGATACGT
			AGCCGACCTGAGAGGGTAATCGGCCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACAA
			TGGACGAAAGTCTGATGGAGCAACGCCGCGTGAGTGAAGAAGGGTTTCGGCTCGTAAAACTCTGTTGTTAAAGAAGAACATATCTGA
			GAGTAACTGTTCAGGTATTGACGGTATTTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAG
			CGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTTTTAAGTCTGATGTGAAAGCCTTCGGCTCAACCGAAGAAGTGCA
			TCGGAAACTGGGAAACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTGAAATGCGTAGATATATGGAAGAACACCAG
			TGGCGAAGGCGGCTGTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGTATGGGTAGCAAACAGGATTAGATACCCTGGTAGTCC
7.	L. plantarum	36ст	ATACATGCAAGTCGAACGAACTCTGGTATTGATTGGTGCTTGCATCATGATTTACATTTGAGTGAG
	1		GTGGGAAACCTGCCCAGAAGCGGGGGGATAACACCTGGAAACAGATGCTAATACCGCATAACAACTTGGACCGCATGGTCCGAGTTTG
			AAAGATGGCTTCGGCTATCACTTTTGGATGGTCCCGCGGCGTATTAGCTAGATGGTGGGGGTAACGGCTCACCATGGCAATGATACGT
			AGCCGACCTGAGAGGGTAATCGGCCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACAA
			TGGACGAAAGTCTGATGGAGCAACGCCGCGTGAGTGAAGAAGGGTTTCGGCTCGTAAAACTCTGTTGTTAAAGAAGAACATATCTGA
			GAGTAACTGTTCAGGTATTGACGGTATTTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAG
			CGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTTTTAAGTCTGATGTGAAAGCCTTCGGCTCAACCGAAGAAGTGCA
			TCGGAAACTGGGAAACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTGAAATGCGTAGATATATGGAAGAACACCAG
			TGGCGAAGGCGGCTGTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGTATGGGTAGCAAACAGGATTAGATACCCTGGTAGTCC
8.	L. plantarum	106зв	ATACATGCAAGTCGAACGAACTCTGGTATTGATTGGTGCTTGCATCATGATTTACATTTGAGTGAG
	1		GTGGGAAACCTGCCCAGAAGCGGGGGGATAACACCTGGAAACAGATGCTAATACCGCATAACAACTTGGACCGCATGGTCCGAGTTTG
			AAAGATGGCTTCGGCTATCACTTTTGGATGGTCCCGCGGCGTATTAGCTAGATGGTGAGGTAACGGCTCACCATGGCAATGATACGT
			AGCCGACCTGAGAGGGTAATCGGCCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACAA
			TGGACGAAAGTCTGATGGAGCAACGCCGCGTGAGTGAAGAAGGGTTTCGGCTCGTAAAACTCTGTTGTTAAAGAAGAACATATCTGA
			GAGTAACTGTTCAGGTATTGACGGTATTTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAG
			CGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTTTTAAGTCTGATGTGAAAGCCTTCGGCTCAACCGAAGAAGTGCA

			TCGGAAACTGGGAAACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTGAAATGCGTAGATATATGGAAGAACACCAG
			TGGCGAAGGCGGCTGTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGTATGGGTAGCAAACAGGATTAGATACCCTGGTAGTCC
9.	L. plantarum	29ст	TGCAAAGTCGAACGAACTCTGGTATTGATTGGTGCTTGCATCATGATTTACATTTGAGTGAG
	1		GAAACCTGCCCAGAAGCGGGGGGATAACACCTGGAAACAGATGCTAATACCGCATAACAACTTGGACCGCATGGTCCGAGTTTGAAAG
			ATGGCTTCGGCTATCACTTTTGGATGGTCCCGCGGCGTATTAGCTAGATGGTGGGGTAACGGCTCACCATGGCAATGATACGTAGCC
			GACCTGAGAGGGTAATCGGCCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACAATGGA
			CGAAAGTCTGATGGAGCAACGCCGCGTGAGTGAAGAAGGGTTTCGGCTCGTAAAACTCTGTTGTTAAAGAAGAACATATCTGAGAGT
			AACTGTTCAGGTATTGACGGTATTTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTT
			GTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTTTTAAGTCTGATGTGAAAGCCTTCGGCTCA
10.	L. plantarum	90ст	${\tt TCGAACGAACTCTGGTATTGATTGGTGCTTGCATCATGATTTACATTTGAGTGAG$
			GCCCAGAAGCGGGGGGATAACACCTGGAAACAGATGCTAATACCGCATAACAACTTGGACCGCATGGTCCGAGTTTGAAAGATGGCTT
			CGGCTATCACTTTTGGATGGTCCCGCGGCGTATTAGCTAGATGGTGGGGGTAACGGCTCACCATGGCAATGATACGTAGCCGACCTGA
			GAGGGTAATCGGCCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACAATGGACGAAAGT
			CTGATGGAGCAACGCCGCGTGAGTGAAGAAGGGTTTCGGCTCGTAAAACTCTGTTGTTAAAGAAGAACATATCTGAGAGTAACTGTT
			CAGGTATTGACGGTATTTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGA
			TTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTTTTAAGTCTGATGTGAAAGCCTTCGGCTCAACCGAAGAAGTGCATCGGAAACTGG
			GAAACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTGAAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCG
			GCTGTCTGGTCTGTAACTGACGCTGAGGCT
11.	L. plantarum	191г	AAGTCGTACGAACTGCTGTGGTATTGATTGGTGCTTGCATCATGATTTACATTTGAGTGAG
	_		AAACCTGCCCAGAAGCGGGGGATAACACCTGGAAACAGATGCTAATACCGCATAACAACTTGGACCGCATGGTCCGAGTTTGAAAGA
			TGGCTTCGGCTATCACTTTTGGATGGTCCCGCGGCGTATTAGCTAGATGGTGAGGTAACGGCTCACCATGGCAATGATACGTAGCCG
			ACCTGAGAGGGTAATCGGCCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACAATGGAC
			GAAAGTCTGATGGAGCAACGCCGCGTGAGTGAAGAAGGGTTTCGGCTCGTAAAACTCTGTTGTTAAAGAAGAACATATCTGAGAGTA
			ACTGTTCAGGTATTGACGGTATTTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTG
			TCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTTTTAAGTCTGATGTGAAAGCCTTCGGCTCAACCGAAGAAGTGCATCGGA
			AACTGGGAAACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTG
12.	L. plantarum	29ск	ATACATGCAAGTCGAACGAACTGCTGGGTATTGGATTGG
			AACACGTGGGAAACCTGCCCAGAAGCGGGGGGATAACACCTGGAAACAGATGCTAATACCGCATAACAACTTGGACCGCATGGTCCGA
			GTTTGAAAGATGGCTTCGGCTATCACTTTTGGATGGTCCCGCGGCGTATTAGCTAGATGGTGGGGTAACGGCTCACCATGGCAATGA
			TACGTAGCCGACCTGAGAGGGTAATCGGCCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTC
			CACAATGGACGAAAGTCTGATGGAGCAACGCCGCGTGAGTGA
			TCTGAGAGTAACTGTTCAGGTATTGACGGTATTTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTG
			GCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTTTTAAGTCTGATGTGAAAGCCTTCGGCTCAACCGAAGAA
			GTGCATCGGAAACTGGGAAACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTGAAATGCGTAGATATATGGAAGAAC
			ACCAGTGGCGAAGGCGGCTGTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGTATGGGTAGCAAACAGGATTAGATACCCTGGTAGT
			CCATACCGTAAACGATGAATGCTAAGTGTTGGAGGGTTTCCGCCCTTCAGTGCTGCAGCTAACGCATTAAGCATTCCGCCTGGGGAG
			TACGGCCGCAAGGCTGAAACTCAAAGGAATTGACGGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCTACGCGAAGA
			ACCTTACCAGGTCTTGACATACTATGCAAATCTAAGAGATTAGACGTTCCCTTCGGGGGACATGGATACAGGTGGTGCATGGTTGTCG
			TCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTATTATCAGTTGCCAGCATTAAGTTGGGCACTCTGG
			TGAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCCTTATGACCTGGGCTACACACGTGCTACAA
			TGGATGGTACAACGAGTTGCGAACTCGCGAGAGTAAGCTAATCTCTTAAAGCCATTCTCAGTTCGGATTGTAGGCTGCAACTCGCCT

			ACATGAAGTCGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCA
			TGAGAGTTTGTAACACCCAAAGTCGGTGGGGTAACCTTTTAGGAACCAGCCGCCCTAA
13.	L. plantarum	32ск	GGCGTGCCTATACATGGAGTCGAACGAACTCTGGTATTGATTG
	r		AGTAACACGGGGGAAACCTGCCCAGAAGCGGGGGGATAACACCTGGAAACAGATGCTAATACCGCATAACAACTTGGACCGCATGGTC
			CGAGTTTGAAAGATGGCTTCGGCTATCACTTTTGGATGGTCCCGCGGCGTATTAGCTAGATGGTGGGGGTAACGGCTCACCATGGCAA
			TGATACGTAGCCGACCTGAGAGGGTAATCGGCCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATC
			TTCCACAATGGACGAAAGTCTGATGGAGCAACGCCGCGTGAGTGA
			ATATCTGAGAGTAACTGTTCAGGTATTGACGGTATTTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAG
			GTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCG
			GAAGTGCATCGGAAACTGGGAAACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTGAAATGCGTAGATATATGGAAG
			AACACCAGTGGCGAAGGCGGCTGTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGTATGGGTAGCAAACAGGATTAGATACCCTGGT
			AGTCCATACCGTAAACGATGAATGCTAAGTGTTGGAGGGTTTCCGCCCTTCAGTGCTGCAGCTAACGCATTAAGCATTCCGCCTGGG
			GAGTACGGCCGCAAGGCTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCTACGCGA
			AGAACCTTACCAGGTCTTGACATACTATGCAAATCTAAGAGATTAGACGTTCCCTTCGGGGGACATGGATACAGGTGGTGCATGGTTG
			TCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTATTATCAGTTGCCAGCATTAAGTTGGGCACTC
			TGGTGAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGTGCTA
			CAATGGATGGTACAACGAGTTGCGAACTCGCGAGAGTAAGCTAATCTCTTAAAGCCATTCTCAGTTCGGATTGTAGGCTGCAACTCG
			CCTACATGAAGTCGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACA
			CCATGAGAGTTTGTAACACCCAAAGTCGGTGGGGTAACCTTTTAGGAACCAGCCGCCTAAGTGACAGATTA
14.	L. plantarum	46ск	GGCGTGGCTAATACATGCAAGTCGAACGAACTCTGGTATTGATTG
	•		TGAGTAACACGTGGGAAACCTGCCCAGAAGCGGGGGGATAACACCTGGAAACAGATGCTAATACCGCATAACAACTTGGACCGCATGG
			TCCGAGTTTGAAAGATGGCTTCGGCTATCACTTTTGGATGGTCCCGCGGCGTATTAGCTAGATGGTGGGGTAACGGCTCACCATGGC
			AATGATACGTAGCCGACCTGAGAGGGTAATCGGCCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAA
			TCTTCCACAATGGACGAAAGTCTGATGGAGCAACGCCGCGTGAGTGA
			ACATATCTGAGAGTAACTGTTCAGGTATTGACGGTATTTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGT
			AGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCG
			AAGAAGTGCATCGGAAACTGGGAAACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTGAAATGCGTAGATATATGGA
			AGAACACCAGTGGCGAAGGCGGCTGTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGTATGGGTAGCAAACAGGATTAGATACCCTG
			GTAGTCCATACCGTAAACGATGAATGCTAAGTGTTGGAGGGTTTCCGCCCTTCAGTGCTGCAGCTAACGCATTAAGCATTCCGCCTG
			GGGAGTACGGCCGCAAGGCTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCTACGC
			GAAGAACCTTACCAGGTCTTGACATACTATGCAAATCTAAGAGATTAGACGTTCCCTTCGGGGACATGGATACAGGTGGTGCATGGT
			TGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTATTATCAGTTGCCAGCATTAAGTTGGGCAC
			TCTGGTGAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGTGC
			TACAATGGATGGTACAACGAGTTGCGAACTCGCGAGAGTAAGCTAATCTCTTAAAGCCATTCTCAGTTCGGATTGTAGGCTGCAACT
			CGCCTACATGAAGTCGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCA
			CACCATGAGAGTTTGTAACACCCCAAAGTCGGTGGGGTAACCTTTTAGGAACCAGCCGCCTAAGGTGAACCAGGAT
15.	L. plantarum	75ск	AGGGCCTTGGGGGGGTGCCTAATACATGCAAGTCGAACGAA
			TGGCGAACTGGTGAGTAACACGTGGGAAACCTGCCCAGAAGCGGGGGGATAACACCTGGAAACAGATGCTAATACCGCATAACAACTT
			GGACCGCATGGTCCGAGTTTGAAAGATGGCTTCGGCTATCACTTTTGGATGGTCCCGCGGCGTATTAGCTAGATGGTGGGGGTAACGG
			CTCACCATGGCAATGATACGTAGCCGACCTGAGAGGGTAATCGGCCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCA
			GCAGTAGGGAATCTTCCACAATGGACGAAAGTCTGATGGAGCAACGCCGCGTGAGTGA

			GTTAAAGAAGAACATATCTGAGAGTAACTGTTCAGGTATTGACGGTATTTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCG
			CGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCG
			CGGCTCAACCGAAGAAGTGCATCGGAAACTGGGAAACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTGAAATGCGT
			AGATATATGGAAGAACACCAGTGGCGAAGGCGGCTGTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGTATGGGTAGCAAACAGGAT
			TAGATACCCTGGTAGTCCATACCGTAAACGATGAATGCTAAGTGTTGGAGGGTTTCCGCCCTTCAGTGCTGCAGCTAACGCATTAAG
			CATTCCGCCTGGGGAGTACGGCCGCAAGGCTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATT
			CGAAGCTACGCGAAGAACCTTACCAGGTCTTGACATACTATGCAAATCTAAGAGATTAGACGTTCCCTTCGGGGACATGGATACAGG
			TGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTATTATCAGTTGCCAGCATT
			AAGTTGGGCACTCTGGTGAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGC
			TACACACGTGCTACAATGGATGGTACAACGAGTTGCGAACTCGCGAGAGTAAGCTAATCTCTTAAAGCCATTCTCAGTTCGGATTGT
			AGGCTGCAACTCGCCTACATGAAGTCGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACAC
			ACCGCCCGTCACACCATGAGAGTTTGTAACACCCCAAAGTCGGTGGGGTAACCTTTTAGGAACCAGCCGCCTAAGGTGGAACAGAT
16.	L. plantarum	90ск	TGGGCGGGGGGGGGGGGGGCTAATACATGCAAGTCGAACGAA
	2. p. c		TGGCGAACTGGTGAGTAACACGTGGGAAACCTGCCCAGAAGCGGGGGATAACACCTGGAAACAGATGCTAATACCGCATAACAACTT
			GGACCGCATGGTCCGAGCTTGAAAGATGGCTTCGGCTATCACTTTTGGATGGTCCCGCGGCGTATTAGCTAGATGGTGGGGGTAACGG
			CTCACCATGGCAATGATACGTAGCCGACCTGAGAGGGTAATCGGCCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCA
			GCAGTAGGGAATCTTCCACAATGGACGAAAGTCTGATGGAGCAACGCCGCGTGAGTGA
			GTTAAAGAAGAACATATCTGAGAGTAACTGTTCAGGTATTGACGGTATTTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCG
			CGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCG
			CGGCTCAACCGAAGAAGTGCATCGGAAACTGGGAAACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTGAAATGCGT
			AGATATATGGAAGAACACCAGTGGCGAAGGCGGCTGTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGTATGGGTAGCAAACAGGAT
			TAGATACCCTGGTAGTCCATACCGTAAACGATGAATGCTAAGTGTTGGAGGGTTTCCGCCCTTCAGTGCTGCAGCTAACGCATTAAG
			CATTCCGCCTGGGGAGTACGGCCGCAAGGCTGAAACTCAAAGGAATTGACGGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATT
			CGAAGCTACGCGAAGAACCTTACCAGGTCTTGACATACTATGCAAATCTAAGAGATTAGACGTTCCCTTCGGGGACATGGATACAGG
			TGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTATTATCAGTTGCCAGCATT
			AAGTTGGGCACTCTGGTGAGACTGCCGGTGACAAACCGGAGGAGGTGGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGC
			TACACACGTGCTACAATGGATGGTACAACGAGTTGCGAACTCGCGAGAGTAAGCTAATCTCTTAAAGCCATTCTCAGTTCGGATTGT
			AGGCTGCAACTCGCCTACATGAAGTCGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACAC
			ACCGCCCGTCACCATGAGAGTTTGTAACACCCCAAAGTCGGTGGGGTAACCTTTTAGGAACCAGCCGCCTAAGGTGACCAGGAA
17.	L. rhamnosus	421-2	GCAGCGAACGGGTGTTTTGAACGGGGGGGGGG
			TAACCTGCCCTTAAGTGGGGGGATAACATTTGGAAACAGATGCTAATACCGCATAAATCCAAGAACCGCATGGTTCTTGGCTGAAAGA
			TGGCGTAAGCTATCGCTTTTGGATGGACCCGCGGCGTATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCAATGATACGTAGCCG
			AACTGAGAGGTTGATCGGCCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACAATGGAC
			GCAAGTCTGATGGAGCAACGCCGCGTGAGTGAAGAAGGCTTTCGGGTCGTAAAACTCTGTTGGTGGAGAAGAATGGTCGGCAGAGTA
			ACTGTTGTCGGCGTGACGGTATCCAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTA
			TCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTTTTAAGTCTGATGTGAAAGCCCTCGGCTTAACCGAGGAAGTGCATCGGA
			AACTGGNAAACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTGAAATGCGTAGATATATGGAAGAACACCAGTGGCG
			AAGGCGGCTGTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCTGGTAGTCCATGCCGTA
			AACGATGAATGCTAGGTGTTGGA
18.	L. rhamnosus	7дст	ATACATGCAAGTCGAACGAGTTCTGATTATTGAAAGGTGCTTGCATCTTGATTTAATTTTGAACGAGTGGCGGACGGGTGAGTAACA
			CGTGGGTAACCTGCCCTTAAGTGGGGGGATAACATTTGGAAACAGATGCTAATACCGCATAAATCCAAAAACCGCATGGTTCTTGGCT

			GAAAGATGGCGTAAGCTATCGCTTTTGGATGGACCCGCGGCGTATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCAATGATACG
			TAGCCGAACTGAGAGGTTGATCGGCCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACA
			ATGGACGCAAGTCTGATGGAGCAACGCCGCGTGAGTGAAGAAGGCTTTCGGGTCGTAAAACTCTGTTGTTGGAGAAGAATGGTCGGC
			AGAGTAACTGTTGTCGGCGTGACGGTATCCAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAA
			GCGTTATCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTTTTAAGTCTGATGTGAAAGCCCTCGGCTTAACCGAGGAAGTGC
			ATCGGAAACTGGGAAACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTGAAATGCGTAGATATATGGAAGAACACCA
			GTGGCGAAGGCGGCTGTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCTGGTAGTC
19	L rhamnosus	24лст	ATACATGCAAGTCGAACGAGTTCTGATTATTGAAAGGTGCTTGCATCTTGATTTAATTTTGAACGAGTGGCGGACGGGTGAGTAACA
17.	Li mamilo sub	2.201	CGTGGGTAACCTGCCCTTAAGTGGGGGGATAACATTTGGAAACAGATGCTAATACCGCATAAATCCAAGAACCGCATGGTTCTTGGCT
			GAAAGATGGCGTAAGCTATCGCTTTTGGATGGACCCGCGGCGTATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCAATGATACG
			TAGCCGAACTGAGAGGTTGATCGGCCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACA
			ATGGACGCAAGTCTGATGGAGCAACGCCGCGTGAGTGAAGAAGGCTTTCGGGTCGTAAAACTCTGTTGTTGGAGAAGAATGGTCGGC
			AGAGTAACTGTTGTCGGCGTGACGGTATCCAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAA
			GCGTTATCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTTTTAAGTCTGATGTGAAAGCCCTCGGCTTAACC
20.	L. rhamnosus	К32	ATACATGCAAGTCGAACGAGTTCTGATTATTGAAAGGTGCTTGCATCTTGATTTAATTTTGAACGAGTGGCGGACGGGTGAGTAACA
			CGTGGGTAACCTGCCCTTAAGTGGGGGGATAACATTTGGAAACAGATGCTAATACCGCATAAATCCAAGAACCGCATGGTTCTTGGCT
			GAAAGATGGCGTAAGCTATCGCTTTTGGATGGACCCGCGGCGTATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCAATGATACG
			TAGCCGAACTGAGAGGTTGATCGGCCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACA
			ATGGACGCAAGTCTGATGGAGCAACGCCGCGTGAGTGAAGAAGGCTTTCGGGTCGTAAAACTCTGTTGTTGGAGAAGAATGGTCGGC
			AGAGTAACTGTTGTCGGCGTGACGGTATCCAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAA
			GCGTTATCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTTTTAAGTCTGATGTGAAAGCCCTCGGCTTAACCGAGGAAGTGC
			ATCGGAAACTGGGAAACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTGAAATGCGTAGATATATGGAAGAACACCA
			GTGGCGAAGGCGGCTGTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCTGGTAGTC
21.	L. rhamnosus	38к	ATACATGCAAGTCGAACGAGTTCTGATTATTGAAAGGTGCTTGCATCTTGATTTAATTTTGAACGAGTGGCGGACGGGTGAGTAACA
			CGTGGGTAACCTGCCCTTAAGTGGGGGGATAACATTTGGAAACAGATGCTAATACCGCATAAATCCAAGAACCGCATGGTTCTTGGCT
			GAAAGATGGCGTAAGCTATCGCTTTTGGATGGACCCGCGGCGTATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCAATGATACG
			TAGCCGAACTGAGAGGTTGATCGGCCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACA
			ATGGACGCAAGTCTGATGGAGCAACGCCGCGTGAGTGAAGAAGGCTTTCGGGTCGTAAAACTCTGTTGTTGGAGAAGAATGGTCGGC
			AGAGTAACTGTTGTCGGCGTGACGGTATCCAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAA
			GCGTTATCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTTTTAAGTCTGATGTGAAAGCCCTCGGCTTAACCGAGGAAGTGC
			ATCGGAAACTGGGAAACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTGAAATGCGTAGATATATGGAAGAACACCA
			GTGGCGAAGGCGGCTGTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCTGGTAGTC
22.	L. rhamnosus	50зв	GTCGAACGAGTTCTGATTATTGAAAGGGTGCTTGCATCTTGATTTAATTTTGAACGAGTGGCGGACGGGTGAGTAACACGTGGGTAA
	21	0002	CCTGCCCTTAAGTGGGGGGATAACATTTGGAAACAGATGCTAATACCGCATAAATCCAAGAACCGCATGGTTCTTGGCTGAAAGATGG
			CGTAAGCTATCGCTTTTGGATGGACCCGCGGCGTATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCAATGATACGTAGCCGAAC
			TGAGAGGTTGATCGGCCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACAATGGACGCA
			AGTCTGATGGAGCAACGCCGCGTGAGTGAAGAAGGCTTTCGGGTCGTAAAACTCTGTTGTTGGAGAAGAATGGTCGGCAGAGTAACT
			GTTGTCGGCGTGACGGTATCCAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCC
			GGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTTTTAAGTCTGATGTGAAAGCCCTCGGCTTAACCGAGGAAGTGCATCGGAAAC
			TGGGAAACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTGAAATGCGTAGATATATGGAAGAACACCAGTGGCGAAG
			GCGGCTGTCTGGTCTGTAACTGACGCTGAGGCTCGAAAG

23.	L. rhamnosus	72зв	ATACATGCAAGTCGAACGAGTTCTGATTATTGAAAGGTGCTTGCATCTTGATTTGATTTTGAACGAGTGGCGGACGGGTGAGTAACA
		,	CGTGGGTAACCTGCCCTTAAGTGGGGGGATAACATTTGGAAACAGATGCTAATACCGCATAAATCCAAGAACCGCATGGTTCTTGGCT
			GAAAGATGGCGTAAGCTATCGCTTTTGGATGGACCCGCGGCGTATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCAATGATACG
			TAGCCGAACTGAGAGGTTGATCGGCCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACA
			ATGGACGCAAGTCTGATGGAGCAACGCCGCGTGAGTGAAGAAGGCTTTCGGGTCGTAAAACTCTGTTGTTGGAGAAGAATGGTCGGC
			AGAGTAACTGTTGTCGGCGTGACGGTATCCAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAA
			GCGTTATCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTTTTAAGTCTGATGTGAAAGCCCTCGGCTTAACCGAGGAAGTGC
			ATCGGAAACTGGGAAACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTGAAATGCGTAGATATATGGAAGAACACCA
			GTGGCGAAGGCGGCTGTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCTGGTAGTC
24.	L. rhamnosus	40ст	ATGCAAGTCGAACGAGTTCTGATTATTGAAGGGTGCTTGCATCTTGATTTAATTTTGAACGAGTGGCGGACGGGTGAGTAACACGTG
			GGTAACCTGCCCTTAAGTGGGGGGATAACATTTGGAAACAGATGCTAATACCGCATAAATCCAAGAACCGCATGGTTCTTGGCTGAAA
			GATGGCGTAAGCTATCGCTTTTGGATGGACCCGCGGCGTATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCAATGATACGTAGC
			CGAACTGAGAGGTTGATCGGCCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACAATGG
			ACGCAAGTCTGATGGAGCAACGCCGCGTGAGTGAAGAAGGCTTTCGGGTCGTAAAACTCTGTTGTTGGAGAAGAATGGTCGGCAGAG
			TAACTGTTGTCGGCGTGACGGTATCCAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGT
			TATCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTTTTAAGTCTGATGTGAAAGCCCTCGGCTTAACCGAGGAAGTGCATCG
			GAAACTGGGAAACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTGAAATGCGTAGATATATGGAAGAACACCAGTGG
			CGAAGGCGGCTGTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCATGGGTAGC
25.	L. rhamnosus	80ст	CGAGTTCTGATTATTGAAAGGTGCTTGCATCTTGATTTAATTTTGAACGAGTGGCGGACGGGTGAGTAACACGTGGGTAACCTGCCC
			TTAAGTGGGGGGATAACATTTGGAAACAGATGCTAATACCGCATAAATCCAAGAACCGCATGGTTCTTGGCTGAAAGATGGCGTAAGC
			TATCGCTTTTGGATGGACCCGCGGCGTATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCAATGATACGTAGCCGAACTGAGAGG
			TTGATCGGCCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACAATGGACGCAAGTCTGA
			TGGAGCAACGCCGCGTGAGTGAAGAAGGCTTTCGGGTCGTAAAACTCTGTTGTTGGAGAAGAATGGTCGGCAGAGTAACTGTTGTCG
			GCGTGACGGTATCCAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTTA
			TTGGGCGTAAAGCGAGCGCAGGCGGTTTTTTAAGTCTGATGTGAAAGCCCTCGGCTTAACCGAGGAAGTGCATCGGAA
26.	L. rhamnosus	22гн	${\tt TCGAACGAGTTCTGATTATTGAAAGGTGCTTGCATCTTGATTTAATTTTGAACGAGTGGCGGACGGGTGAGTAACACGTGGGTAACCC$
			TGCCCTTAAGTGGGGGGATAACATTTGGAAACAGATGCTAATACCGCATAAATCCAAGAACCGCATGGTTCTTGGCTGAAAGATGGCG
			TAAGCTATCGCTTTTGGATGGACCCGCGGCGTATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCAATGATACGTAGCCGAACTG
			AGAGGTTGATCGGCCACATTGGGACTGAAACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACAATGGACGCAAG
			TCTGATGGAGCAACGCCGCGTGAGTGAAGAAGGCTTTCGGGTCGTAAAACTCTGTTGTTGGAGAAGAATGGTCGGCAGAATAACTGT
			TGTCGGCGTGACGGTATCCAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGG
			ATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTTTTAAGTCT
27.	L. rhamnosus	2гн	TGCAAGTCGAACGAGTTCTGATTATTGAAAGGTGCTTGCATCTTGATTTAATTTTGAACGAGTGGCGGACGGGTGAGTAACACGTGG
			GTAACCTGCCCTTAAGTGGGGGGATAACATTTGGAAACAGATGCTAATACCGCATAAATCCAAGAACCGCATGGTTCTTGGCTGAAAG
			ATGGCGTAAGCTATCGCTTTTGGATGGACCCGCGGCGTATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCAATGATACGTAGCC
			GAACTGAGAGGTTGATCGGCCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACAATGGA
			CGCAAGTCTGATGGAGCAACGCCGCGTGAGTGAAGAAGGCTTTCGGGTCGTAAAACTCTGTTGTTGGAGAAGAATGGTCGGCAGAGT
			AACTGTTGTCGGCGTGACGGTATCCAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTT
			ATCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTTTTAAGTCTGATGTGAAAGCCCTCGGCTTAACCGAGGAAGTGCATCGG
			AAACTGGGAAACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTGAAATGCGTAGATATATGGAAGAACACCAGTGGC
			GAAGGCGGCTGTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCA

28.	L. rhamnosus	B51	GTCGAACGAGTTCTGATTATTGAAAGGTGCTTGCATCTTGATTTAATTTTGAACGAGTGGCGGACGGGTGAGTAACACGTGGGTAAC
			CTGCCCTTAAGTGGGGGGATAACATTTGGAAACAGATGCTAATACCGCATAAATCCAAGAACCGCATGGTTCTTGGCTGAAAGATGGC
			GTAAGCTATCGCTTTTGGATGGACCCGCGGCGTATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCAATGATACGTAGCCGAACT
			GAGAGGTTGATCGGCCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACAATGGACGCAA
			GTCTGATGGAGCAACGCCGCGTGAGTGAAGAAGGCTTTCGGGTCGTAAAACTCTGTTGTTGGAGAAGAATGGTCGGCAGAGTAACTG
			TTGTCGGCGTGACGGTATCCAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCG
			GATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTTTTAAGTCTGATGTGAAAGCCCTCGGCTTAACCGAGGAAGTGCATCGGAAACT
			GGGAAACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTGAAATGCGTAGATATA
29.	L. rhamnosus	45л	GCAAGTCGAACGAGTTCTGATTATTGAAAGGTGCTTGCATCTTGATTTAATTTTGAACGAGTGGCGGACGGGTGAGTAACACGTGGG
		- / 1	TAACCTGCCCTTAAGTGGGGGGATAACATTTGGAAACAGATGCTAATACCGCATAAATCCAAGAACCGCATGGTTCTTGGCTGAAAGA
			TGGCGTAAGCTATCGCTTTTGGATGGACCCGCGGCGTATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCAATGATACGTAGCCG
			AACTGAGAGGTTGATCGGCCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACAATGGAC
			GCAAGTCTGATGGAGCAACGCCGCGTGAGTGAAGAAGGCTTTCGGGTCGTAAAACTCTGTTGTTGGAGAAGAATGGTCGGCAGAGTA
			ACTGTTGTCGGCGTGACGGTATCCAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTA
			TCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTTTTAAGTCTGATGTGAAAGCCCTCGGCTTAACCGAGGAAGTGCATCGGA
			AACTGGAAAACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTGAAATGCGTAGATATATGGAAGAACACCAGTGGCG
			AAGGCGGCTGTCTGGTCTGAACTGACGCTGAGGCT
30.	L. rhamnosus	50ст	CAGTCGAACGAGTTCTGATTATTGAAAGGTGCTTGCATCTTGATTTAATTTTGAACGAGTGGCGGACGGGTGAGTAACACGTGGGTA
			ACCTGCCCTTAAGTGGGGGGATAACATTTGGAAACAGATGCTAATACCGCATAAATCCAAAAACCGCATGGTTCTTGGCTGAAAGATG
			GCGTAAGCTATCGCTTTTGGATGGACCCGCGGCGTATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCAATGATACGTAGCCGAA
			CTGAGAGGTTGATCGGCCACATTGGGACTGAAACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACAATGGACGC
			AAGTCTGATGGAGCAACGCCGCGTGAGTGAAGAAGGCTTTCGGGTCGTAAAACTCTGTTGTTGGAGAAAAATGGTCGGCAGAGTAAC
			TGTTGTCGGCGTGACGGTATCCAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATC
			CGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTTTTAAGTCTGATGTGAAAGCCCTCGGCTTAACCGAGGAAGTGCATCGGAAA
			CTGGGAAACTTGAGTGCAGAAGAG
31.	L. rhamnosus	26ск	TACATGCAAGTCGAACGAGTTCTGATTATTGAAAGGGTGCTTGCATCTTGATTTAATTTTGAACGAGTGGCGGACGGGTGAGTAACA
			CGTGGGTAACCTGCCCTTAAGTGGGGGGATAACATTTGGAAACAGATGCTAATACCGCATAAATCCAAGAACCGCATGGTTCTTGGCT
			GAAAGATGGCGTAAGCTATCGCTTTTGGATGGACCCGCGGCGTATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCAATGATACG
			TAGCCGAACTGAGAGGTTGATCGGCCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACA
			ATGGACGCAAGTCTGATGGAGCAACGCCGCGTGAGTGAAGAAGGCTTTCGGGTCGTAAAACTCTGTTGTTGGAGAAGAATGGTCGGC
			AGAGTAACTGTTGTCGGCGTGACGGTATCCAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAA
			GCGTTATCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTTTTAAGTCTGATGTGAAAGCCCTCGGCTTAACCGAGGAAGTGC
			ATCGGAAACTGGAAAACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTGAAATGCGTAGATATATGGAAGAACACCA
			GTGGCGAAGGCGGCTGTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCTGGTAGTCCAT
			GCCGTAAACGATGAATGCTAGGTGTTGGAGGGTTTCCGCCCTTCAGTGCCGCAGCTAACGCATTAAGCATTCCGCCTGGGGAGTACG
			ACCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCT
			TACCAGGTCTTGACATCTTTTGATCACCTGAGAGATCAGGTTTCCCCTTCGGGGGGCAAAATGACAGGTGGTGCATGGTTGTCGTCAG
			CTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTATGACTAGTTGCCAGCATTTAGTTGGGCACTCTAGTAAG
			ACTGCCGGTGACAAACCGGAGGAAGGTGGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGTGCTACAATGGA
			TGGTACAACGAGTTGCGAGACCGCGAGGTCAAGCTAATCTCTTAAAGCCATTCTCAGTTCGGACTGTAGGCTGCAACTCGCCTACAC
			GAAGTCGGAATCGCTAGTAATCGCGGATCAGCACGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCTCACCATGAG

			AGTTTGTAACACCCGAAGCCGGTGGCGTAACCCTTTTAGGGAGCGAGC
32.	L. rhamnosus	61ск	CGAACGAGTTCTGATTATTGAAAGGGTGCTTGCATCTTGATTTAATTTTGAACGAGTGGCGGACGGGTGAGTAACACGTGGGTAACC
			TGCCCTTAAGTGGGGGGATAACATTTGGAAACAGATGCTAATACCGCATAAATCCAAGAACCGCATGGTTCTTGGCTGAAAGATGGCG
			TAAGCTATCGCTTTTGGATGGACCCGCGGCGTATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCAATGATACGTAGCCGAACTG
			AGAGGTTGATCGGCCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACAATGGACGCAAG
			TCTGATGGAGCAACGCCGCGTGAGTGAAGAAGGCTTTCGGGTCGTAAAACTCTGTTGTTGGAGAAGAATGGTCGGCAGAGTAACTGT
			TGTCGGCGTGACGGTATCCAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGG
			ATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTTTTAAGTCTGATGTGAAAGCCCTCGGCTTAACCGAGGAAGTGCATCGGAAACTG
			GAAAACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTGAAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGC
			GGCTGTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCTGGTAGTCCATGCCGTAAACGA
			TGAATGCTAGGTGTTGGAGGGTTTCCGCCCTTCAGTGCCGCAGCTAACGCATTAAGCATTCCGCCTGGGGAGTACGACCGCAAGGTT
			GAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTT
			GACATCTTTTGATCACCTGAGAGATCAGGTTTCCCCTTCGGGGGGCAAAATGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTG
			AGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTATGACTAGTTGCCAGCATTTAGTTGGGCACTCTAGTAAGACTGCCGGTGA
			CAAACCGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACGTGCTACAATGGATGG
			GTTGCGAGACCGCGAGGTCAAGCTAATCTCTTAAAGCCATTCTCAGTTCGGACTGTAGGCTGCAACTCGCCTACACGAAGTCGGAAT
			CGCTAGTAATCGCGGATCAGCACGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGAGAGTTTGTAACA
			CCCGAAGCCGGTGGTCGTAACCCT
33.	L. fermentum	гКНМ 526	AGTCNACGCGTTGGCCCATTGATTGATGGTGCTTGCACCTGATTGAT
			GGTAACCTGCCCAGAAGCGGGGGGACAACATTTGGAAACAGATGCTAATACCGCATAACANCGTTGTTCGCATGAACAACGCTTAAAA
			GATGGCTTCTCGCTATCACTTCTGGATGGACCTGCGGTGCATTAGCTTGTTGGTGGGGGTAACGGCCTACCAAGGCGATGATGCATAG
			CCGAGTTGAGAGACTGATCGGCCACAATGGGACTGAGACACGGCCCATACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACAATG
			GGCGCAAGCCTGATGGAGCAACACCGCGTGAGTGAAGAAGGGTTTCGGCTCGTAAAGCTCTGTTGTTAAAGAAGAACACGTATGAGA
			GTAACTGTTCATACGTTGACGGTATTTAACCAGAAAGTCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCG
			TTATCCGGATTTATTGGGCGTAAAGAGAGTGCAGGCGGTTTTCTAAGTCTGATGTGAAAGCCTTCGGCTTAACCGGAGAAGTGCATC
			GGAAACTGGATAACTTGAGTGCAGAAGAGGGTAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTG
			GCGAAGGCGGCTACCTGGTCTGCAACTGACGCTGAGACTCGAAAGCATGGGTTAGCGAACAGGATTAGATACCCTGGTAGTCCATGC
			CGTAAACGATGAGTGCTAGGTGTTGGAGGGTTTCCGCCCTTCANTGCCGGAGCTAACGC
34.	L. fermentum	2пр	ATACATGCAAGTCGAACGCGTTGGCCCAATTGATTGATGGTGCTTGCACCTGATTGAT
			AGTAACACGTAGGTAACCTGCCCAGAAGCGGGGGGACAACATTTGGAAACAGATGCTAATACCGCATAACAGCGTTGTTCGCATGAAC
			AACGCTTAAAAGATGGCTTCTCGCTATCACTTCTGGATGGA
			ATGATGCATAGCCGAGTTGAGAGACTGATCGGCCACAATGGGACTGAGACACGGCCCATACTCCTACGGGAGGCAGCAGTAGGGAAT
			CTTCCACAATGGGCGCAAGCCTGATGGAGCAACACCGCGTGAGTGA
			CACGTATGAGAGTAACTGTTCATACGTTGACGGTATTTAACCAGAAAGTCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTA
			GGTGGCAAGCGTTATCCGGATTTATTGGGCGTAAAGAGAGTGCAGGCGGTTTTCTAAGTCTGATGTGAAAGCCTTCGGCTTAACCGG
			AGAAGTGCATCGGAAACTGGATAACTTGAGTGCAGAAGAGGGGTAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAA
			GAACACCAGTGGCGAAGGCGGCTACCTGGTCTGCAACTGACGCTGAGACTCGAAAGCATGGGTAGCGAACAGGATTAGATACCC
35.	L. fermentum	11зв	ATACATGCAAGTCGAACGCGTTGGCCCAATTGATTGATGGTGCTTGCACCTGATTGAT
			AGTAACACGTAGGTAACCTGCCCAGAAGCGGGGGGACAACATTTGGAAACAGATGCTAATACCGCATAACAGCGTTGTTCGCATGAAC
			AACGCTTAAAAGATGGCTTCTCGCTATCACTTCTGGATGGA
1			ATGATGCATAGCCGAGTTGAGAGACTGATCGGCCACAATGGGACTGAGACACGGCCCATACTCCTACGGGAGGCAGCAGTAGGGAAT

			CTTCCACAATGGGCGCAAGCCTGATGGAGCAACACCGCGTGAGTGA
			CACGTATGAGAGTAACTGTTCATACGTTGACGGTATTTAACCAGAAAGTCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTA
			GGTGGCAAGCGTTATCCGGATTTATTGGGCGTAAAGAGAGTGCAGGCGGTTTTCTAAGTCTGATGTGAAAGCCTTCGGCTTAACCGG
			AGAAGTGCATCGGAAACTGGATAACTTGAGTGCAGAAGAGGGTAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAA
			GAACACCAGTGGCGAAGGCGGCTACCTGGTCTGCAACTGACGCTGAGACTCGAAAGCATGGGTAGCGAACAGGATTAGATACCC
36.	L. fermentum	11лст	ATACATGCAAGTCGAACGCGTTGGCCCAATTGATTGATGGTGCTTGCACCTGATTGAT
			AGTAACACGTAGGTAACCTGCCCAGAAGCGGGGGGACAACATTTGGAAACAGATGCTAATACCGCATAACAACGTTGTTCGCATGAAC
			AACGCTTAAAAGATGGCTTCTCGCTATCACTTCTGGATGGA
			ATGATGCATAGCCGAGTTGAGAGACTGATCGGCCACAATGGGACTGAGACACGGCCCATACTCCTACGGGAGGCAGCAGTAGGGAAT
			CTTCCACAATGGGCGCAAGCCTGATGGAGCAACACCGCGTGAGTGA
			CACGTATGAGAGTAACTGTTCATACGTTGACGGTATTTAACCAGAAAGTCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTA
			GGTGGCAAGCGTTATCCGGATTTATTGGGCGTAAAGAGAGTGCAGGCGGTTTTCTAAGTCTGATGTGAAAGCCTTCGGCTTAACCGG
			AGAAGTGCATCGGAAACTGGATAACTTGAGTGCAGAAGAGGGTAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAA
			GAACACCAGTGGCGAAGGCGGCTACCTGGTCTGCAACTGACGCTGAGACTCGAAAGCATGGGTAGCGAACAGGATTAGATACCC
37.	L. fermentum	291г	TGCAAGTCGAACGCGTTGGCCCAATTGATTGATGGTGCTTGCACCTGATTGAT
	v		CACGTAGGTAACCTGCCCAGAAGCGGGGGGACAACATTTGGAAACAGATGCTAATACCGCATAACAACGTTGTTCGCATGAACAACGC
			TTAAAAGATGGCTTCTCGCTATCACTTCTGGATGGACCTGCGGTGCATTAGCTTGTTGGTGGGGGTAACGGCCTACCAAGGCGATGAT
			GCATAGCCGAGTTGAGAGACTGATCGGCCACAATGGGACTGAGACACGGCCCATACTCCTACGGGAGGCAGCAGTAGGGAATCTTCC
			ACAATGGGCGCAAGCCTGATGGAGCAACACCGCGTGAGTGA
			ATGAGAGTAACTGTTCATACGTTGACGGTATTTAACCAGAAAGTCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGG
			CAAGCGTTATCCGGATTTATTGGGCGTAAAGAGAGTGCAGGCGGTTTTCTAAGTCTGATGTGAAAGCCTTCGGCTTAACCGGAGAAG
			TGCATCGGAAACTGGATAACTTGAGTGCAGAAGAGGGTAGTGGAACTCCATGTGTAGCGGTGGAATGCG
38.	L. fermentum	57ск	TCCGATCGGCCGGGGTGCTAATACATGCAAGTCGAACGCGTTGGCCCAATTGATGGTGCTTGCACCTGATTGAAAAAGGAAGC
			CAACGAGTGGCGGACGGGTGAGTAACACGTAGGTAACCTGCCCAGAAGCGGGGGACAACATTTGGAAACAGATGCTAATACCGCATA
			ACAACGTTGTTCGCATGAACAACGCTTAAAAGATGGCTTCTCGCTATCACTTCTGGATGGA
			GGTAACGGCCTACCAAGGCGATGATGCATAGCCGAGTTGAGAGACTGATCGGCCACAATGGGACTGAGACACGGCCCATACTCCTAC
			GGGAGGCAGCAGTAGGGAATCTTCCACAATGGGCGCAAGCCTGATGGAGCAACACCGCGTGAGTGA
			GCTCTGTTGTTAAAGAAGAACACGTATGAGAGTAACTGTTCATACGTTGACGGTATTTAACCAGAAAGTCACGGCTAACTACGTGCC
			AGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTTATTGGGCGTAAAGAGAGTGCAGGCGGTTTTCTAAGTCTGATGTG
			AAAGCCTTCGGCTTAACCGGAGAAGTGCATCGGAAACTGGATAACTTGAGTGCAGAAGAGGGTAGTGGAACTCCATGTGTAGCGGTG
			GAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTACCTGGTCTGCAACTGACGCTGAGACTCGAAAGCATGGGTAGCG
			AACAGGATTAGATACCCTGGTAGTCCATGCCGTAAACGATGAGTGCTAGGTGTTGGAGGGTTTCCGCCCTTCAGTGCCGGAGCTAAC
			GCATTAAGCACTCCGCCTGGGGGGGTACGACCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTG
			GTTTAATTCGAAGCTACGCGAAGAACCTTACCAGGTCTTGACATCTTGCGCCAACCCTAGAGATAGGGCGTTTCCTTCGGGAACGCA
			ATGACAGGTGGTGCATGGTCGTCGTCAGCTCGTGTCGTG
			CCAGCATTAAGTTGGGCACTCTAGTGAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGGACGACGTCAGATCATCATGCCCCTTATG
			ACCTGGGCTACACACGTGCTACAATGGACGGTACAACGAGTCGCGAACTCGCGAGGGCAAGCAA
			CGGACTGCAGGCTGCAACTCGCCTGCACGAAGTCGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCC
			TTGTACACACCGCCCGTCTCTCCATGAGAGTTTGTAACACCCCAAAGTCGGTGGGGTAACCTTTTAGGAGCCAGCC
			CACGAAA

39.	L. fermentum	59ск	ATGCAGTCGAACGCGTTGGCCCAATTGATTGATGGTGCTTGCACCTGATTGAT
	J		CACGTAGGTAACCTGCCCAGAAGCGGGGGGACAACATTTGGAAACAGATGCTAATACCGCATAACAACGTTGTTCGCATGAACAACGC
			TTAAAAGATGGCTTCTCGCTATCACTTCTGGATGGACCTGCGGTGCATTAGCTTGTTGGTGGGGTAATGGCCTACCAAGGCGATGAT
			GCATAGCCGAGTTGAGAGACTGATCGGCCACAATGGGACTGAGACACGGCCCATACTCCTACGGGAGGCAGCAGTAGGGAATCTTCC
			ACAATGGGCGCAAGCCTGATGGAGCAACACCGCGTGAGTGA
			ATGAGAGTAACTGTTCATACGTTGACGGTATTTAACCAGAAAGTCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGG
			CAAGCGTTATCCGGATTTATTGGGCGTAAAGAGAGAGTGCAGGCGGTTTTCTAAGTCTGATGTGAAAGCCTTCGGCTTAACCGGAGAAG
			TGCATCGGAAACTGGATAACTTGAGTGCAGAAGAGGGTAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACA
			CCAGTGGCGAAGGCGGCTACCTGGTCTGCAACTGACGCTGAGACTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCTGGTAGTC
			CATGCCGTAAACGATGAGTGCTAGGTGTTGGAGGGTTTCCGCCCTTCAGTGCCGGAGCTAACGCATTAAGCACTCCGCCTGGGGAGT
			ACGACCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCTACGCGAAGAA
			CCTTACCAGGTCTTGACATCTTGCGCCAACCCTAGAGATAGGGCGTTTCCTTCGGGAACGCAATGACAGGTGGTGCATGGTCGTCGT
			CAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGTTACTAGTTGCCAGCATTAAGTTGGGCACTCTAGT
			GAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGGACGACGTCAGATCATGCCCCCTTATGACCTGGGCTACACACGTGCTACAAT
			GGACGGTACAACGAGTCGCGAACTCGCGAGGGCAAGCAAATCTCTTAAAAACCGTTCTCAGTTCGGACTGCAGGCTGCAACTCGCCTG
			CACGAAGTCGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCAT
			GAGAGTTTGTAACACCCAAAGTCGGTGGGGTAACCT
40.	L. fermentum	60ск	ATGCAAGTCGAACGCGTTGGCCAAATTGATTGATGGTGCTTGCACCTGATTGAT
	v		ACACGTAGGTAACCTGCCCAGAAGCGGGGGGACAACATTTGGAAACAGATGCTAATACCGCATAACAACGTTGTTCGCATGAACAACG
			CTTAAAAGATGGCTTCTCGCTATCACTTCTGGATGGACCTGCGGTGCATTAGCTTGTTGGTGGGGTAATGGCCTACCAAGGCGATGA
			TGCATAGCCGAGTTGAGAGACTGATCGGCCACAATGGGACTGAGACACGGCCCATACTCCTACGGGAGGCAGCAGTAGGGAATCTTC
			CACAATGGGCGCAAGCCTGATGGAGCAACACCGCGTGAGTGA
			TATGAGAGTAACTGTTCATACGTTGACGGTATTTAACCAGAAAGTCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTG
			GCAAGCGTTATCCGGATTTATTGGGCGTAAAGAGAGTGCAGGCGGTTTTCTAAGTCTGATGTGAAAGCCTTCGGCTTAACCGGAGAA
			GTGCATCGGAAACTGGATAACTTGAGTGCAGAAGAGGGTAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAAC
			ACCAGTGGCGAAGGCGGCTACCTGGTCTGCAACTGACGCTGAGACTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCTGGTAGT
			CCATGCCGTAAACGATGAGTGCTAGGTGTTGGAGGGTTTCCGCCCTTCAGTGCCGGAGCTAACGCATTAAGCACTCCGCCTGGGGAG
			TACGACCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCTACGCGAAGA
			ACCTTACCAGGTCTTGACATCTTGCGCCAACCCTAGAGATAGGGCGTTTCCTTCGGGAACGCAATGACAGGTGGTGCATGGTCGTCG
			TCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGTTACTAGTTGCCAGCATTAAGTTGGGCACTCTAG
			TGAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGACGACGTCAGATCATCATGCCCCTTATGACCTGGGCTACACACGTGCTACAA
			TGGACGGTACAACGAGTCGCGAACTCGCGAGGGCAAGCAA
			GCACGAAGTCGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCA
			TGAGAGTTTGTAACACCCAAAGTCGGTGGGGTAAC
41.	L. fermentum	102ск	ATACATGCAGTCGAACGCGTTGGCCCAATTGATTGACGGTGCTTGCACCTGATTGAT
	0		GTAACACGTAGGTAACCTGCCCAGAAGCGGGGGGGCACAACATTTGGAAACAGATGCTAATACCGCATAACAGCGTTGTTCGCATGAACA
			ACGCTTAAAAGATGGCTTCTCGCTATCACTTCTGGATGGA
			TGATGCATAGCCGAGTTGAGAGACTGATCGGCCACAATGGGACTGAGACACGGCCCATACTCCTACGGGAGGCAGCAGTAGGGAATC
			TTCCACAATGGGCGCAAGCCTGATGGAGCAACACCGCGTGAGTGA
			ACGTATGAGAGTAACTGTTCATACGTTGACGGTATTTAACCAGAAAGTCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAG
			GTGGCAAGCGTTATCCGGATTTATTGGGCGTAAAGAGAGTGCAGGCGGTTTTCTAAGTCTGATGTGAAAGCCTTCGGCTTAACCGGA

			GAAGTGCATCGGAAACTGGATAACTTGAGTGCAGAAGAGGGTAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAG
			AACACCAGTGGCGAAGGCGGCTACCTGGTCTGCAACTGACGCTGAGACTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCTGGT
			AGTCCATGCCGTAAACGATGAGTGCTAGGTGTTGGAGGGTTTCCGCCCTTCAGTGCCGGAGCTAACGCATTAAGCACTCCGCCTGGG
			GAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCTACGCGA
			AGAACCTTACCAGGTCTTGACATCTTGCGCCAACCCTAGAGATAGGGCGTTTCCTTCGGGAACGCAATGACAGGTGGTGCATGGTCG
			TCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGTTACTAGTTGCCAGCATTAAGTTGGGCACTC
			TAGTGAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGACGACGTCAGATCATCATGCCCCTTATGACCTGGGCTACACACGTGCTA
			CAATGGACGGTACAACGAGTCGCGAACTCGCGAGGGCAAGCAA
			CCTGCACGAAGTCGGAATCGCTAGTAATCGCGGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACA
			CCATGAGAGTTTGTAACACCCCAAAGTCGGTGGGGTAACCTTTAGGAGCCAGCC
42.	L. fermentum	103ск	ATGCAGTCGAACGCGTTGGCCCAAATTGATTGATGGTGCTTGCACCTGATTGAT
	0		ACACGTAGGTAACCTGCCCAGAAGCGGGGGGACAACATTTGGAAACAGATGCTAATACCGCATAACAACGTTGTTCGCATGAACAACG
			CTTAAAAGATGGCTTCTCGCTATCACTTCTGGATGGACCTGCGGTGCATTAGCTTGTTGGTGGGGGTAACGGCCTACCAAGGCGATGA
			TGCATAGCCGAGTTGAGAGACTGATCGGCCACAATGGGACTGAGACACGGCCCATACTCCTACGGGAGGCAGCAGTAGGGAATCTTC
			CACAATGGGCGCAAGCCTGATGGAGCAACACCGCGTGAGTGA
			TATGAGAGTAACTGTTCATACGTTGACGGTATTTAACCAGAAAGTCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTG
			GCAAGCGTTATCCGGATTTATTGGGCGTAAAGAGAGTGCAGGCGGTTTTCTAAGTCTGATGTGAAAGCCTTCGGCTTAACCGGAGAA
			GTGCATCGGAAACTGGATAACTTGAGTGCAGAAGAGGGTAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAAC
			ACCAGTGGCGAAGGCGGCTACCTGGTCTGCAACTGACGCTGAGACTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCTGGTAGT
			CCATGCCGTAAACGATGAGTGCTAGGTGTTGGAGGGTTTCCGCCCTTCAGTGCCGGAGCTAACGCATTAAGCACTCCGCCTGGGGAG
			TACGACCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCTACGCGAAGA
			ACCTTACCAGGTCTTGACATCTTGCGCCAACCCTAGAGATAGGGCGTTTCCTTCGGGAACGCAATGACAGGTGGTGCATGGTCGTCG
			TCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGTTACTAGTTGCCAGCATTAAGTTGGGCACTCTAG
			TGAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGACGACGTCAGATCATCATGCCCCTTATGACCTGGGCTACACACGTGCTACAA
			TGGACGGTACAACGAGTCGCGAACTCGCGAGGGCAAGCAA
			GCACGAAGTCGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCA
			TGAGAGTTTGTAACACCCAAAGTCGGTGGGGT
43.	L. casei/	гКНМ 23	CCTATCATGCAAGTCGAACGAAGTTCTCGTTGATGATCGGTGCTTGCACCGAGATTCAACATGGAACGAGTGGCGGACGGGTGAGTA
	paracasei		ACACGTGGGTAACCTGCCCTTAAGTGGGGGGATAACATTTGGAAACAGATGCTAATACCGCATAGATCCAAGAACCGCATGGTTCTTG
	puractiser		GCTGAAAGATGGCGTAAGCTATCGCTTTTGGATGGACCCGCGGCGTATTAGCTAGTTGGTGAGGTAATGGCTCACCAAGGCGATGAT
			ACGTAGCCGAACTGAGAGGTTGATCGGCCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCC
			ACAATGGACGCAAGTCTGATGGAGCAACGCCGCGTGAGTGA
			GGCAGAGTAACTGTTGTCGGCGTGACGGTATCCAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGG
			CAAGCGTTATCCGGNATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTTTTT
44.	L. casei/	гКНМ 577	TAGCATTCATCGTTTACGGCATGGACTAACCAGGGTATNTAATCCTGTTCGCTACCCATGCTTTCGAGCCTCAGCGTCAGTTTACAG
	paracasei		ACCAGACAGCCGCCTTCGCCACTGGTGTTCTTCCATATATCTACGCATTTCACCGCTACACATGGAGTTCCACTGTCCTCTTCTGCA
	Paracaser		CTCAAGTTTCCCAGTTTCCGATGCGCTTCCTCGGTTAAGCCGAGGGCTTTCACATCAGACTTAAAAAAACCGCCTGCGCTCGCT
			GCCCAATAAATCCGGATAACGCTTGCCACCTACGTATTACCGCGGCTGCTGGCACGTAGTTAGCCGTGGCTTTCTGGTTGGATACCG
			TCACGCCGACAACAGTTACTCTGCCGACCATTCTTCTCCAACAACAGAGTTTTACGACCCGAAAGCCTTCTTCACTCAC
			GCTCCATCAGACTTGCGTCCATTGTGGAAGATTCCCTACTGCTGCCTCCCGTAGGAGTTTGGGCCGTGTCTCAGTCCCAATGTGGCC
			GATCAACCTCTCAGTTCGGCTACGTATCATCGCCTTGGTGAGCCATTACCTCACCAACTAGCTAATACGCCGCGGGTCCATCCA
			GCGATAGCTTACGCCATCTTTCAGCCAAGAACCATGCGGTTCTTGGATCTATGCGGTATTAGCATCTGTTTCCAAATGTTATCCCCC ACTTAAGGGCAGGTTACCCACGTGTTACTCACCCGTCCGCCACTCGTTCCATGTTGAATCTCGGTGCAAGCACCGATCATCAACGAG AACTCGTCGACTGCA
-----	------------------------	--------------------------------	---
45.	L. casei/ paracasei	К ₃ Ш ₂₄	GATTACAACATGGAACGAGTGGCGGACGGGTGAGTAACACGTGGGTAACCTGCCCTTAAGTGGGGGGATAACATTTGGAAACAGATGC TAATACCGCATAGATCCAAGAACCGCATGGTTCTTGGCTGAAAGATGGCGTAAGCTATCGCTTTTGGATGGA
46.	L. casei/ paracasei	20011	GCCTATACATGCAAGTCGTACGAGTTTTGGTCGATGAAGGGTGCTTGCACTGAGATTCGACTTAAAACGAGTGGCGGACGGGTGAGTAACACGTGGGTAACCTGCCCTTAAGTGGGGGATAACATTTGGAAACAGATGCTAATACCGCATAAATCCAAGAACCGCATGGTTCTTGGCTGAAAGATGGCGCAAGCTATCGCTTTTGGATGGACCGCGGGGGCTATTAGCTAGTTGGTGGGGGGAGCAGCAAGGCGCAAGGCGAGAGATACGTAGCCGAACTGAGAGGTTGATCGGCCACATTGGGACTGAGACCGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAAACTTCCACAATGGACGCAAGTCTGATGGAGCAACGCCGCGGTGAGTGA
47.	L. casei/ paracasei	17κ	ATACATGCAAGTCGAACGAGTTCTCGTTGATGATCGGTGCTTGCACCGAGATTCAACATGGAACGAGTGGCGGACGGGTGAGTAACA CGTGGGTAACCTGCCCTTAAGTGGGGGGATAACATTTGGAAACAGATGCTAATACCGCATAGATCCAAGAACCGCATGGTTCTTGGCT GAAAGATGGCGTAAGCTATCGCTTTTGGATGGACCCGCGGCGTATTAGCTAGTTGGTGAGGTAATGGCTCACCAAGGCGATGATACG TAGCCGAACTGAGAGGTTGATCGGCCACATTGGGACCGGAGCACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACA ATGGACGCAAGTCTGATGGAGCAACGCCGCGTGAGTGAAGAAGGCTTTCGGGTCGTAAAACTCTGTTGTTGGGAGAAGAATGGTCGGC AGAGTAACTGTTGTCGGCGTGACGGTATCCAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAA GCGTTATCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGGTTTTTTAAGTCTGATGTGAAAGCCCTCGGCTTAACCGAGGAAGCGC ATCGGAAACTGGGAAACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTGAAATGCGTAGATATAGGAAGAACACCA GTGGCCGAAGGCGGCTGTCTGTAACTGACGGCGCGGCTGAGGAACTCCATGTGTAGCGGTAGAATGCGTAGATATGGAAGAACACCA
48.	L. casei/ paracasei	42ст	CATGCAAGTCGAACGAGTTCTCGTTGATGATCGGTGCTTGCACCGAGATTCAACATGGAACGAGTGGCGGACGGGTGAGTAACACGT GGGTAACCTGCCCTTAAGTGGGGGGATAACATTTGGAAACAGATGCTAATACCGCATAGATCCAAGAACCGCATGGTTTTTGGCTGAA AGATGGCGTAAGCTATCGCTTTTGGATGGACCCGCGGGGGTATTAGCTAGTTGGTGAGGTAATGGCTCACCAAGGCGATGATACGTAG CCGAACTGAGAGGTTGATCGGCCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGGAATCTTCCACAATG GACGCAAGTCTGATGGAGCAACGCCGCGTGAGTGAAGAAGGCTTTCGGGTCGTAAAACTCTGTTGTTGGAGAAGAATGGTCGGCAGA GTAACTGTTGTCGGCGTGACGGTATCCAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCCAAGCG

			TTATCCGGATTTATTGGGCGTCCAGCGAGCGCAGGCGGCTTTTTAAGTCTGATGTGAAAGCCCTCGGCT
49.	L. casei/	48ст	CGAACGAGTTCTCGTTGATGATCGGTGCTTGCACCGAGATTCAACATGGAACGAGTGGCGGACGGGTGAGTAACACGTGGGTAACCT
	naracasei		GCCCTTAAGTGGGGGGATAACATTTGGAAACAGATGCTAATACCGCATAGATCCAAGAACCGCATGGTTCTTGGCTGAAAGATGGCGT
	puracaser		AAGCTATCGCTTTTGGATGGACCCGCGGCGTATTAGCTAGTTGGTGAGGTAATGGCTCACCAAGGCGATGATACGTAGCCGAACTGA
			GAGGTTGATCGGCCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACAATGGACGCAAGT
			CTGATGGAGCAACGCCGCGTGAGTGAAGAAGGCTTTCGGGTCGTAAAACTCTGTTGTTGGAGAAGAATGGTCGGCAGAGTAACTGTT
			GTCGGCGTGACGGTATCCAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGA
			TTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTTTTAAGTCTGATGTGAAAGCCCTCGGCTTAACCGAGGAAGCGCATCGGAAAC
50.	L. casei/	51ст	GTCGAACGAGTTCTCGTTGATGATCGGTGCTTGCACCGAGATTCAACATGGCAACGAGTGGCGGACGGGTGAGTAACACGTGGGTAA
	naracasei		CCTGCCCTTAAGTGGGGGGATAACATTTGGAAACAGATGCTAATACCGCATAGATCCAAGAACCGCATGGTTCTTGGCTGAAAGATGG
	purucuser		CGTAAGCTATCGCTTTTGGATGGACCCGCGGCGTATTAGCTAGTTGGTGAGGTAATGGCTCACCAAGGCGATGATACGTAGCCGAAC
			TGAGAGGTTGATCGGCCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACAATGGACTCA
			AGTCTGATGGAGCAACGCCGCGTGAGTGAAGAAGGCTTTCGGGTCGTAAAACTCTGTTGTTGGAGAAGAATGGTCGGCAGAGTAACT
			GTTGTCGGCTTGACGGTATCCAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCC
			GGATTTATTGGGCGTAAAGCGAGCGCTTTGCGGTTTTTTAAGTCTGAT
51.	L. helveticus	Er 315/402	AGATTTACTTCGGTAATGACGCTGGGGACGCGGAGCGGCGGATGGGTGAGTAACACGTGGGGAACCTGCCCCATAGTCTGGGATACCA
			CTTGGAAACAGGTGCTAATACCGGATAAGAAAGCAGATCGCATGATCAGCTTATAAAAGGCGGCGTAAGCTGTCGCTATGGGATGGC
			CCCGCGGTGCATTAGCTAGTTGGTAAGGTAACGGCTTACCAAGGCAATGATGCATAGCCGAGTTGAGAGACTGATCGGCCACATTGG
			GACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACAATGGACGCAAGTCTGATGGAGCAACGCCGCGTG
			AGTGAAGAAGGTTTTCGGATCGTAAAGCTCTGTTGTTGGTGAAGAAGGATAGAGGTAGTAACTGGCCTTTATTTGACGGTAATCAAC
			CAGAAAGTCACGGCT
52.	L. helveticus	100 аш	CACGTGGGGAACCTGCCCCATAGTCTGGGATACCACTTGGAAACAGGTGCTAATACCGGATAAGAAAGCAGATCGCATGATCAGCTT
			ATAAAAGGCGGCGTAAGCTGTCGCTATGGGATGGCCCCGCGGTGCATTAGCTAGTTGGTAAGGTAACGGCTTACCAAGGCAATGATG
			CATAGCCGAGTTGAGAGACTGATCGGCCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCA
			CAATGGACGCAAGTCTGATGGAGCAACGCCGCGTGAGTGA
			AGGTAGTAACTGGCCTTTATTTGACGGTAATCAACCAGAAAGTCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGC
			AAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGAAGAATAAGTCTGATGTGAAAGCCCTCGGCT
53.	L. helveticus	NK-1	GTCGAGCGAGCAGAACCAGCAGATTTACTTCGGTAATGACGCTGGGGACGCGAGCGGCGGATGGGTGAGTAACACGTGGGGAACCTG
			CCCCATAGTCTGGGATACCACTTGGAAACAGGTGCTAATACCGGATAAGAAAGCAGATCGCATGATCAGCTTATAAAAGGCGGCGTA
			AGCTGTCGCTATGGGATGGCCCCGCGGTGCATTAGCTAGTTGGTAAGGTAACGGCTTACCAAGGCAATGATGCATAGCCGAGTTGAG
			AGACTGATCGGCCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACAATGGACGCAAGTC
			TGATGGAGCAACGCCGCGTGAGTGAAGAAGGTTTTCGGATCGTAAAGCTCTGTTGTTGGTGAAGAAGGATAGAGGTAGTAACTGGCC
			TTTATTTGACGGTAATCAACCAGAAAGTCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAT
			TTATTGGGCGTAAAGCGAGCGCAGGCGGAAGAATAAGTCTGATGTGAAAGCCCTCGGCTTAACCGAGGAACTGCATCGGAAACTGTT
			TTTCTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAANGCGA
			CTCTCTGGTCTGCAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGAT
54.	L. helveticus	NNIE	ACACGTGGGGAACCTGCCCCATAGTCTGGGATACCACTTGGAAACAGGTGCTAATACCGGATAAGAAAGCAGATCGCATGATCAGCT
			TATAAAAGGCGGCGTAAGCTGTCGCTATGGGATGGCCCCGCGGTGCATTAGCTAGTTGGTAAGGTAACGGCTTACCAAGGCAATGAT
			GCATAGCCGAGTTGAGAGACTGATCGGCCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCATCAGTAGGGAATCTTCC
			ACAATGGACGCAAGTCTGATGGAGCAACGCCGCGTGAGTGA
			GAGGTAGTAACTGGCCTTTATTTGACGGTAATCAACCAGAAAGTCACGGCTAACTAC

55.	L. brevius	15f	CAAGTCGAACGAGCTTCCGTGTGAATGACGTGCTTGCACTGATTTTAACAATGAAGCGAGTGGCGAACTGGTGAGTAACACGTGGGA
	2. 01011115	101	AATCTGCCCAGAAGCAGGGGATAACACTTGGAAACAGGTGCTAATACCGTATAACAACAAAATCCGCATGGATTTTGTTTG
			GGCTTCGGCTATCACTTCTGGATGATCCCGCGGCGTATTAGTTAG
			CCTGAGAGGGTAATCGGCCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACAATGGACG
			AAAGTCTGATGGAGCAATGCCGCGTGAGTGAAGAAGGGTTTCGGCTCGTAAAACTCTGTTGTTAAAGAAGAACACCTTTGAGAGTAA
			CTGTTCAAGGGTTGACGGTATTTAACCAGAAAGCCACGGCTAACTACGTGCCAGCATCCGCGGTAATACGTAGGTGGCAAGCGTTGT
			CTGGATTTATTGGACGTAAAGCGAGAGCA
56.	L. brevis	47ст	AGTCGAACGAGCTTCCGTTGAATGACGTGCTTGCACTGATTTCAACAATGAAGCGAGTGGCGAACTGGTGAGTAACACGTGGGGGAAT
		.,	CTGCCCAGAAGCAGGGGATAACACTTGGAAACAGGTGCTAATACCGTATAACAACAAAATCCGCATGGATTTTGTTTG
			TTCGGCTATCACTTCTGGATGATCCCGCGGCGTATTAGTTAG
			GAGAGGGTAATCGGCCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACAATGGACGAAA
			GTCTGATGGAGCAATGCCGCGTGAGTGAAGAAGGGTTTCGGCTCGTAAAACTCTGTTGTTAAAGAAGAACACCTTTGAGAGTAACTG
			TTCAAGGGTTGACGGTATTTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCG
57.	L. brevis	52ст	AAGTCGAACGAGCTTCCGTTGAATGACGTGCTTGCACTGATTTCAACAATGAAGCGAGTGGCGAACTGGTGAGTAACACGTGGGAAA
			TCTGCCCAGAAGCAGGGGATAACACTTGGAAACAGGTGCTAATACCGTATAACAACAAAATCCGCATGGATTTTGTTTG
			CTTCGGCTATCACTTCTGGATGATCCCGCGGCGTATTAGTTAG
			TGAGAGGGTAATCGGCCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACAATGGACGAA
			AGTCTGATGGAGCAATGCCGCGTGAGTGAAGAAGGGTTTCGGCTCGTAAAACTCTGTTGTTAAAGAAGAACACCTTTGAGAGTAACT
			GTTCAAGGGTTGACGGTATTTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCC
			GGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTTTTAAGTCTGATGTGAAAGCCTTCGGCTTAA
58.	L. mucosa	46ст	GCAAGTCGAACGCGTTGGCCCAACTGATTGAACGTGCTTGCACGGACTTGACGTTGGTTTACCAGCGAGTGGCGGACGGGTGAGTAA
			CACGTAGGTAACCTGCCCCAAAGCGGGGGGATAACATTTGGAAACAGATGCTAATACCGCATAACAATTTGAATCGCATGATTCAAAT
			TTAAAAGATGGCTTCGGCTATCACTTTGGGATGGACCTGCGGCGCATTAGCTTGTTGGTAGGGTAACGGCCTACCAAGGCTGTGATG
			CGTAGCCGAGTTGAGAGACTGATCGGCCACAATGGAACTGAGACACGGTCCATACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCA
			CAATGGGCGCAAGCCTGATGGAGCAACACCGCGTGAGTGA
			TGAGAGCAACTGTTCACGCAGTGACGGTATCTAACCAGAAAGTCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGC
			AAGCGTTATCCGGATTTTATTGGGCGTAAAGCGAGCGCATGCGGTTTG
59.	L. salivarius	44ст	GCAAGTCGAACGAAACTTTCTTACACCGAGATGCTTGCATTCACCGTAAGAAGTTGAGTGGCGGACGGGTGAGTAACACGTGGGTAA
			CCTGCCTAAAAGAAGGGGGATAACACTTGGAAACAGGTGCTAATACCGTATATCTCTAAGGATCGCATGATCCTTAGATGAAAGATGG
			TTCTGCTATCGCTTTTAGATGGACCCGCGGCGTATTAACTAGTTGGTGGGGGTAACGGCCTACCAAGGTGATGATACGTAGCCGAACT
			GAGAGGTTGATCGGCCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACAATGGACGCAA
			GTCTGATGGAGCAACGCCGCGTGAGTGAAGAAGGTCTTCGGATCGTAAAACTCTGTTGTTAGAGAAGAACACGAGTGAGAGTAACTG
			TTCATTCGATGACGGTATCTAACCAGCAAGTCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCG
			GATTTATTGGGCGTAAAGGGAACGCAGGCGGTCTTTTAAGTCTGATGTGAAAGCCTTCGGCTTAACCGGAGTAGTGCATTGGAAACT
			GGAAGACTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGAAATGCGTAGATATATGGAAGAACACCAGTGGCGAAAG
			CGGCTCTCTGGTCTGTAACTGACGCTGAGGTTCGAAAGCGTG
60.	L. salivarius	64ск	TCCTGTCACCTTAGACGGCTGGCTCCTTGCGGTTACCCCACCGGCTTTGGGTGTTACAAACTCTCATGGTGTGACGGGCGGTGTGTA
			CAAGGCCCGGGAACGTATTCACCGCGACATGCTGATTCGCGATTACTAGCGATTCCGACTTCATGTAGGCGAGTTGCAGCCTACAAT
			CCGAACTGAGAACGGCTTTAAGAGATTAGCTAAACCTCGCGGTCTCGCGACTCGTTGTACCGTCCATTGTAGCACGTGTGTAGCCCA
			GGTCATAAGGGGGCATGATGACTTGACGTCGTCCCCACCTTCCTCCGGTTTGTCACCGGCAGTCTCGCCAGAGTGCCCAACTTAATGC
			TGGCAACTGACAACAAGGGTTGCGCTCGTTGCGGGACTTAACCCCAACATCTCACGACACGAGCTGACGACCAGCCATGCACCACCTGT

			CACTTTGTCCCCGAAGGGAAAGCCTAATCTCTTAGGTGGTCAAAGGATGTCAAGACCTGGTAAGGTTCTTCGCGTTGCTTCGAATTA
			AACCACATGCTCCACCGCTTGTGCGGGCCCCCGTCAATTCCTTTGAGTTTCAACCTTGCGGTCGTACTCCCCAGGCGGAATGCTTAT
			TGCGTTAGCTGCGGCACTGAAGGGCGGAAACCCTCCAACACCTAGCATTCATCGTTTACGGCGTGGACTACCAGGGTATCTAATCCT
			GTTTGCTACCCACGCTTTCGAACCTCAGCGTCAGTTACAGACCAGAGAGCCGCTTTCGCCACTGGTGTTCTTCCATATATCTACGCA
			TTTCACCGCTACACATGGAGTTCCACTCTCCTCTTCTGCACTCAAGTCTTCCAGTTTCCAATGCACTACTCCGGTTAAGCCGAAGGC
			TTTCACATCAGACTTAAAAGACCGCCTGCGTTCCCTTTACGCCCAATAAATCCGGACAACGCTTGCCACCTACGTATTACCGCGGCT
			GCTGGCACGTAGTTAGCCGTGACTTGCTGGTTAGATACCGTCATCGAATGAACAGTTACTCTCACTCGTGTTCTTCTCTAACAACAG
			AGTTTTACGATCCGAAGACCTTCTTCACTCACGCGGCGTTGCTCCATCAGACTTGCGTCCATTGTGGAAGATTCCCTACTGCTGCCT
			CCCGTAGGAGTTTGGGCCGTGTCTCAGTCCCAATGTGGCCGATCAACCTCTCAGTTCGGCTACGTATCATCACCTTGGTAGGCCGTT
			ACCCCACCAACTAGTTAATACGCCGCGGGTCCATCTAAAAGCGATAGCAGAACCATCTTTCATCTAAGGATCATGCGATCCTTAGAG
			ATATACGGTATTAGCACCTGTTTCCAAGTGTTATCCCCTTCTTTTAGGCAGGTTACCCACGTGTTACTCACCCGTCCGCCCCTCAAC
			TTCTTACGGTGAATGCAAGCATCTCGGTGTAAGAAAGTTTCGTTCG
61.	L. salivarius	78ск	ACGGGTGTGGGGGGCGTGCGTATACATGCAAGTCGAACGAA
			GGACGGGTGAGTAACACGTGGGTAACCTGCCTAAAAGAAGGGGGATAACACTTGGAAACAGGTGCTAATACCGTATATCTCTAAGGAT
			CGCATGATCCTTAGATGAAAGATGGTTCTGCTATCGCTTTTAGATGGACCCGCGGCGTATTAACTAGTTGGTGGGGGTAACGGCCTAC
			CAAGGTGATGATACGTAGCCGAACTGAGAGGTTGATCGGCCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGT
			AGGGAATCTTCCACAATGGACGCAAGTCTGATGGAGCAACGCCGCGTGAGTGA
			AGAAGAACACGAGTGAGAGTAACTGTTCATTCGATGACGGTATCTAACCAGCAAGTCACGGCTAACTACGTGCCAGCAGCCGCGGTA
			ATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGGGAACGCAGGCGGTCTTTTAAGTCTGATGTGAAAGCCTTCGGCT
			TAACCGGAGTAGTGCATTGGAAACTGGAAGACTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGAAATGCGTAGATA
			TATGGAAGAACACCAGTGGCGAAAGCGGCTCTCTGGTCTGTAACTGACGCTGAGGTTCGAAAGCGTGGGTAGCAAACAGGATTAGAT
			ACCCTGGTAGTCCACGCCGTAAACGATGAATGCTAGGTGTTGGAGGGTTTCCGCCCTTCAGTGCCGCAGCTAACGCAATAAGCATTC
			CGCCTGGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAG
			CAACGCGAAGAACCTTACCAGGTCTTGACATCCTTTGACCACCTAAGAGATTAGGCTTTCCCTTCGGGGACAAAGTGACAGGTGGTG
			CATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGTTGTCAGTTGCCAGCATTAAGTT
			GGGCACTCTGGCGAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGACGACGTCAAGTCATGCCCCCTTATGACCTGGGCTACAC
			ACGTGCTACAATGGACGGTACAACGAGTCGCAAGACCGCGAGGTTTAGCTAATCTCTTAAAGCCGTTCTCAGTTCGGATTGTAGGCT
			GCAACTCGCCTACATGAAGTCGGAATCGCTAGTAATCGCGAATCAGCATGTCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGC
			CCGTCACACCATGAGAGTTTGTAACACCCCAAAGCCGGTGGGGTAACCGCAAGGAGCCAGCC
62.	L. johnsonii	К21	TCGAGCGAGCTTGCCTAGATGATTTTAGTGCTTGCACTAAATGAAACTAGATACAAGCGAGCG
	5		TAACCTGCCCAAGAGACTGGGATAACACCTGGAAACAGATGCTAATACCGGATAACAACACTAGACGCATGTCTAGAGTTTGAAAGA
			TGGTTCTGCTATCACTCTTGGATGGACCTGCGGTGCATTAGCTAGTTGGTAAGGTAACGGCTTACCAAGGCAATGATGCATAGCCGA
			GTTGAGAGACTGATCGGCCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACAATGGACG
			AAAGTCTGATGGAGCAACGCCGCGTGAGTGAAGAAGGGTTTCGGCTCGTAAAGCTCTGTTGGTAGTGAAGAAAGA
			CTGGCCTTTATTTGACGGTAATTACTTAGAAAGTCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGT
			CCGGATTTATTGGGCGTAAAGCGAGTGCAGGCGGTTCAATAAGTCTGATGTGAAAGCCTTCGGCTCAACCGGAGAATTGCATCAGAA
			ACTGTTGAACTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGA
			AGGCGGCTCTCTGGTCTGCAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCTGGTAGTCCATGCCGTAA
			ACGATGAGTGCTAAGTGTTGGGAGGTTTCCGCCTCTCAGTGCTGCAGCTAACGCATTAAGCACTCCGCCTGGGGAGTACGACCGCAA
			GGTTGAAACTCAAAGGAATTGACGGGGGCCC

Приложение Б

Нуклеотидные последовательности межгенного района, предшествующего оперону F0F1 АТФ-синтазы

Штамм L. helveticus	Нуклеотидная последовательность			
100 аш	TTCCCTTTTCGTAAAAAATATTCATTAGAATACGCTTACATGTTACA			
	CAAAGGACTTTTTTGGTGTTAAGATGATTTAAGTGTTCGAGTTTAATT			
	CAACACGAGAAGGGAGGTCACGAAGTA			
Er315/402	TTCCCTTTTCGTAAAAAATATTCATTAGAATACGCTTACATGTTACA			
	CAAAGGACTTTTTTGGTGTTAAGATGATTTAAGTGTTCGAGTTTAATT			
	CAACACGAGAAGGGAGGTCACGAAGTA			
NK1	TTCCCTTTTCGTAAAAAATATTCATTAGAATACGCTTACATGTTACA			
	CAAAGGACTTTTTTGGTGTTAAGATGATTTAAGTGTTCGAGTTTAATT			
	CAACACGAGAAGGGAGGTCACGAAGTA			
NNIE	TTCCCTTTTCGTAAAAAATATTCATTAGAATACGCTTACATGTTACA			
	CAAAGGACTTTTTTGGTGTTAAGATAATTTAAGTGTTCGAGTTTAATT			
	CAACACGAGAAGGGAGGTCACGAAGTA			

Приложение В

Нуклеотидные последовательности TA систем Lactobacillus rhamnosus

- Ххх инициирующие кодоны транскрипции;
- Ххх терминирующие кодоны транскрипции;
- **Ххх** перекрывающиеся инициирующие и терминирующие кодоны.
- Xxx замены нуклеотидов и аминокислот

Сравнение нуклеотидных последовательностей гена и аминокислотных последовательностей белка с геном и белком штамма *L. rhamnosus* LMS2-1 (число замен НК и АК). Жирным шрифтом отмечены штаммы из GenBank.

N⁰	Штамм	Токсин			
		НК гена (273)	АК белка (90)		
1	Lc705, ATCC8530,	0	0		
	CASL, 40ст, 45д, 51гн,				
	2гн, 80ст				
2	R0011, ATCC21052,	10	0		
	HN001				
3	GG , 26ск, 61ск	7	0		
4	723в, 7дст, 503в	9	0		
5	22гн, К32, 38к	14	4		
			A36T		
			V74I		
			D77G		
			I79V		

ATGCCCACCTCCCTGCCCCTCATCGAACAATCCCGCTTCAAAAAACATCTCAAAACAACTC	60
ATGCCCACCTCCCTGCCCCTCATCGAACAATCCCGCTTCAAAAAACATCTCAAACAACTC	60
ATGCCCACCTCCCTGCCCCTTATCGAACAATCCCGCTTCAAAAAACATCTCAAACAACTC	60
ATGCCCACCTCCCTGCCCCTCATCGAACAATCCCGCTTCAAAAAACATCTCAAACAACTC	60
ATGCCCACCTCCCTGCCCCTCATCGAACAATCCCGCTTCAAAAAACATCTCAAACAACTC	60

CTCCAAGCCGG <mark>G</mark> CGCTTCACCAAGGCTGACTTTCAGCAAGT <mark>C</mark> CTTGCTTACTTACAAACC	120
CTCCAAGCCGGCCGCTTCACCAAGGCTGACTTTCA <mark>A</mark> CAAGTTCTTGCTTACTTACAAACC	120
CT <mark>A</mark> CAAGCCGGCCGCTTCAC <mark>T</mark> AAGGCTGACTTTCAGCAAGTTCTTGCTTACTTACAAACC	120
CTCCAAGCCGGCCGCTTCACCAAGGCTGACTTTCA <mark>A</mark> CAAGTTCTTGCTTACTTACAAACC	120
CTCCAAGCCGG <mark>G</mark> CGCTTCACCAAGGCTGACTTTCAGCAAGTTCTT <mark>A</mark> CTTACTTACAAACC	120
** ************************************	

AGCACCCCACTGCCGGAAAAGTATGACGATCACGTGATCAAAAAACGCAA <mark>A</mark> CCAGATCGT	180
AGCAC <mark>A</mark> CCACTGCCGGAAAAGTATGACGATCACGTGATCAAAAAACGCAAGCCAGATCG <mark>C</mark>	180
AGCACCCCACTGCCGGAAAAGTATGACGATCACGTGATCAAAAAACGCAA <mark>A</mark> CCAGATCGT	180
AGCAC <mark>A</mark> CCACTGCCGGAAAAGTATGACGATCACGTGATCAAAAAACGCAAGCCAGATCG <mark>C</mark>	180
AGCACCCCACTGCCGGAAAA <mark>A</mark> TATGACGATCACGTGATCAAAAAACG <mark>T</mark> AAGCC <mark>G</mark> GATCGT	180
***** *********************************	
GCTTTGTTCATCAAAGGTAATTGGCTGCTCATTTACCGAGTTGAACCAGACGCGATCCGC	240
GCTTTGTTCATCAAGGGTAATTGGCTGCTCATTTATCGGGTTGAACCAGACGCGATCCGC	240
GCTTTGTTCATCAAGGGTAATTGGCTGCTCATTTA <mark>C</mark> CG <mark>A</mark> GTTGAACCAGACGCGATCCGC	240
GCTTTGTTCATCAAGGGTAATTGGCTGCTCATTTATCGGGTTGAACCAGACGCGATCCGC	240
GCTTTGTTCATCAA <mark>A</mark> GGTAATTGGCTGCTCAT <mark>C</mark> TATCGG <mark>A</mark> TTGAACCAG <mark>G</mark> CGC <mark>AG</mark> TCCGC	240

TTGATTGATGT <mark>C</mark> GGCCGCCATGGCGAGATTTAA 273	
TTGATTGATGT <mark>T</mark> GGCCGCCATGGCGAGATT <mark>TAA</mark> 273	
TTGATTGATGT <mark>C</mark> GGCCGCCATGGCGAGATT <mark>TAA</mark> 273	
******** ******************************	
	AGCACCCCACTGCCGGAAAAGTATGACGATCACGTGATCAAAAAACGCAAACCAGATCGT AGCACACCACTGCCGGAAAAGTATGACGATCACGTGATCAAAAAACGCAAGCCAGATCGC AGCACCACTGCCGGAAAAGTATGACGATCACGTGATCAAAAAACGCAAACCAGATCGC AGCACCACTGCCGGAAAAATATGACGATCACGTGATCAAAAAACGCAAGCCAGATCGC AGCACCCCACTGCCGGAAAAATATGACGATCACGTGATCAAAAAACGTAAGCCGGATCGC AGCACCCCACTGCCGGAAAAATATGGCGGCTCATTTACCGAGTGAACCAGACGCGGATCCGC GCTTTGTTCATCAAAGGTAATTGGCTGCTCATTTACCGAGTGAACCAGACGCGGATCCGC GCTTTGTTCATCAAGGGTAATTGGCTGCTCATTTACCGAGTGAACCAGACGCGATCCGC GCTTTGTTCATCAAGGGTAATTGGCTGCTCATTTATCGGGTTGAACCAGACGCGATCCGC GCTTTGTTCATCAAGGGTAATTGGCTGCTCATTTATCGGGTTGAACCAGACGCGATCCGC GCTTTGTTCATCAAAGGTAATTGGCTGCTCATTTATCGGGTTGAACCAGACGCGATCCGC GCTTTGTTCATCAAAGGTAATTGGCTGCTCATCTATCGGATGAACCAGACGCGATCCGC TTGGTTCATCAAAGGTAATTGGCTGCTCATCTATCGGATGAACCAGGCGCAGTCCGC *********************************

2 группы штаммов с IS-элементами:

1.24дс, 50зв;

2.421-2;

- <mark>Ххх</mark> фрагменты RelB1 гена;
- Ххх прямые повторы;
- Ххх инвертированные повторы;
- Xxx ORFs IS-элементов;
- Ххх фрагменты IS-элементов вне ORFs.

1 2	TTCAAAAACACCTCCAACAACTCCTC <mark>CAAGC</mark> TGAAGTGCAACAAAAAA <mark>GTTAGA</mark> CAGTTTG <mark>ACATCTCAACAACTCCTC<mark>CAAGC</mark>TGAAGTGCAACAAAAA<mark>GTTAGA</mark>CAGTTGG *** ******************************</mark>	60 53
1 2	AAATTTAGTTACACAGCGGCTTGATTCCGGTATTCAATCGGGGTCAGGCCATTTTTATTG AAAATTAG-TACGCAGCGGTCTGATTCCGATATTCAATCGGGGTCAGGCCATTTTTATTG ***:**** ***.**************************	120 112
1 2	AGTGAAATACGGTCATGATTAAACCACGTGACGTAACGATTTACGATTTGCTTCAGTTCC AGTGAAATACGGTCATGATTAAACCACGTGACGTAATGATCTACGATTTGCTTCAGTTCC **********************************	180 172
1 2	TCAAGATCCTTGATTGGTTGCCGATTGAGCCGTTCTCGTTTGAGTAGGTTGAAGAAACTT TCAAGATCCTTGATTGGTTGCCGATTGAGCCGTTCTCGTTTGAGTAGGTTGAAGAAGCTT ***********************************	240 232
1 2	TCCATTGGTGCGTTATCATGGCAATTACCTTTACGGGACATGCTGGGAATGATACCCATG TCCATTGGTGCGTTATCATGGCAATTACCTTTACGAGACATGCTGGGAACGATGCCCATG ************************************	300 292
1 2	GCGTGCACCCGAGACTGGTATTCACGGGTTTGGTATTGCCATCCTTGGTCAGAATGCACG GCGTGCACCCGAGACTGGTATTCACGGGTTTGGTATTGCCACCCTTGGTCAGAGTGCATG ************************************	360 352
1 2	ATGGGTGTGACGCCAGTGGGAAGCTTCTTAGCCAAATCGTCAAGCGTCAGGTGGAGTTGC ATGGGTGTGACGCCAGCGGGGGGGTTTCTTGGCCAAATCGTCAAGCGTTAGGTGGAGTTGT ************************	420 412

1 2	TCTTTGTTCGCAGAGTTGCGCACAATGACTGTAATAACCTCTCGACTGGCCTCGTCAATA TCTTTGTTCGCGGAGTTGCGCACAATGACTGTAATAACCTCTCGACTGGCCTCGTCAATG ************	480 472
1 2	ATTGCCGAGATATAGCCCCAGCTGTGGTCAAGCAGTCTGACTTGCGTTATGTCGGTGTGC ATGGCCGAGATATAGCCCCAGCTGTGGTCAAGCAGTCTGACTTGCGTTACGTCGGTGTGC ** **********	540 532
1 2	AGGACAGTGAATGGTTCTTCGGCATCGAATTGTTGGTGTAACAGGTTGTCGTTCACAGTG AGGACAGCGAAGGGCTCCTGGGCATCGAATTGTTGGTGTAACAGGTTGTCGTTCACGGTG ******* *** ** ** * ***************	600 592
1 2	CCTACTTTTCCCTTGTAGGAGTGATAACCGCTAGTATGGCGAGAATACAGTGTGACACTA CCTACTTTTCCCTTATAGGAGTGATAGCCGCTAGTATGGCGAGAATACAGTGTGACACTA *********************************	660 652
1 2	AGATTCAATTGCCCCATTAACCGTAGAATTGTATTGGGCGAACACTTAAAGCAGGCTTTT AGATTCAATTGCCCCATTAACCGTAGAATTGTATTGGGTGAGCATTTAAAGCCGGCTTTT *****************************	720 712
1 2	CGCGCCATGATATGAATACGGCGATAGCCATAGGTTTCATACGAGTCATGGAAGGTCTTC CGTGCCATCACATGAATACGGCGATAGCCATAGGTCTCATATGAGTCATGGAAGGTCTTC ** ***** * ***********************	780 772
1 2	TTGATAAATACCTTCAAGGCAGCATATTTATCCGGCTTATTCTTGCGGTGCAAACGGTCA TTGATAAATACCTTCAAGGCGGCATATTTATCCGGCTTATTCTTGCGGTGCAAGCGGTCA ************************************	840 832
1 2	TAGAAAGTAGCCCGAGGCAACTGTGCCAATGCCAATAATTCCTTCAATGGATAGTCATGC TAGAAAGTAGCCCGAGGCAACTGTGCCAATGCCAATAATTCCTTCAATGGATAGTCATGC ************	900 892
1 2	CGTAACGCGTCAACTACTGTTGCTTTTTTGGGCGGCAGATTGTTCTTCGATACGGCCCCTA CGTAACGCGTCAACTACTGCTGTTTTTTGGGCGGCAGATTGTTCTTCGATACGGCCCCTA ******	960 952
1 2	ATTTTTTTAAGAAGTCACGCTCCATTCGGGTATGGTACAGTTCGCCGCGCAGTTTCAGGA ATTTTTTTTAAAAAGTCACGCTCCATTCGCGTATGGTATAACTCGCCGCGTAATTTCAGGA **********************************	1020 1012
1 2	TCTCTTGCTGATAAGCTTCCTTCTCACTAAGCTCAAGCTTCTTAACTTGTTTGGGTTTCT TCTCTTGCTGGTAAGCTTCCTTCTCACTAAGCTCAAGCTTCTTAACTTGTTTGGGTTTCT **********	1080 1072
1 2	TGTGTTTCACTGTAGACCGCCTTCCTCGTGGTTTCGGACGCAGCCCAGCCACTCCCTCAG TATGTTTCACTGTAGACCGCCTTCCTCGCGGTTTCGGACGCAACCCAGCCACTCCCTCAG *.***********************************	1140 1132
1 2	TCTTGAAGATCTTCGTCCAGACAGCCACCTGCGAGGCATTGATCCCGAAATGAGCAGCCG TCTTGAAGATCTTCATCCAGACAGCCACCTGCGAGGCATTGATCCCGAAATGAGCAGCCG *******************	1200 1192
1 2	CAGATACCACACCGCACCACTGGTTTGGTAATAGTCTACCACGGCCAGCTTCTGTTCCA CAGATACCACACCCGCACCACTGGTTTGGTAATAGTCTACCACGGCCAGCTTCTGTTCCA **********************************	1260 1252
1 2	GAGAATAAAATGTCTTCGTATGCTTTCGCTGAAGAGATTCAAGTCCATGGACTTGGGCTT GAGAATAAAATGTCTTCGTATGCTTTCGCTGAAGAGATTCAAGTCCATGGACTTGGGCTT ***********	1320 1312
1 2	GCTTAACCCACTCTCGGACTGGTTTCGGTGACGGGATACTGTATTTAGTGCAAAGGCTTT GCTTAACCCACTCTCGGACTGGTTTCGTTGACGGGATACTGTATTTAGTGCAAAGGCTGT *********************************	1380 1372
1 2	TATAGGAGAGCCGTCCAGAAAGATACTCTTGTACAACCTTTGCCTTGAACTCACTTGAAT TATAGGAAACCCGTCCAGAAAGATACTCCTGTACAACCTTCACCTTGAACTCACTTGAAT **********	1440 1432
1 2	ATTTAGTCATAAAAATGCCCCACAATCGTTAGAGTATCTG <mark>TCTAAC</mark> AATTATGGGGGCACT ATTTAGTCATAAAAATACCCCACAATCATTAGAGTATCTG <mark>TCTAAC</mark> AATTATGGGGGCACT	1500 1492

1	T <mark>CAAGC</mark> CGGGCGCTTCACCAAGGCTGACTTTCAACAAGTCCTTGCTTACTTA	0
2	T <mark>CAAGC</mark> CGGCCGCTTCACCAAGGCTGACTTTCAACAAGTTCTTGCTTACTTA	2
	******** *****************************	
1	CACCCCACTGCCGGAAAAATATGACGATCACGTGATCAAAAAACGCAAGCCGGATCGTGC 162	0
2	CACACCACTGCCGGAAAAGTATGACGATCACGTGATCAAAAAACGCAAGCCAGATCGCGC 161	2
	*** ***********************************	
1	TTTGTTCATCAAAGGTAATTGGCTGCTCATT-ACCGAGTGAACCAGACGCG 1670	
2	TTTGTTCATCAAGGGTAATTGGCTGCTCATTTATCGGGTGAACCAGACGCG 1663	

YefM-YoeB_{Lrh}

Сравнение нуклеотидных последовательностей генов и аминокислотных последовательностей белков с генами и белками штамма *L. rhamnosus* LMS2-1 (число замен НК и АК). Жирным шрифтом отмечены штаммы из GenBank.

N⁰	Штамм	Антил	Антитоксин Тон		ссин	
		НК гена (270)	АК белка (89)	НК гена (261)	АК белка (86)	
1	Lc705,	0	0	0	0	
	ATCC8530,					
	HN001, CASL,					
	2гн, 7дст, 24дст,					
	30зв, 50зв, 51гн,					
	80ст					
2	40ст	0	0	1	1	
					Asp62Glu	
1	<mark>atg</mark> gaagca	ACGAATTATAGTGATTT	CCGCCGCAACCTTAAGC	ATTATATGAGTCAAGTC	60	
2	ATG <mark>GAAGCA</mark>	ACGAATTATAGTGATTT * * * * * * * * * * * * * * * * * *			60	
1	AACGAAGAC	GCCGAACCGCTACTGGT	TACCGCTAAAGATGATG	ATGACAATGTGGTGGTT	120	
2	AACGAAGAC	GCCGAACCGCTACTGGT	TACCGCTAAAGATGATG	ATGACAATGTGGTGGTT	120	
	* * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	*****	*****		
1	ATGAGCAAG	CACGATTTTGACGCCAT	CGAAGAAACCCTGTATT	TACTCAGCAATCCCAAG	180	
2	ATGAGCAAG	CACGATTTTGACGCCAT	CGAAGAAACCCTGTATT	TACTCAGCAATCCCAAG	180	
	* * * * * * * * *	* * * * * * * * * * * * * * * * * *	****	*****		
1	CTGATGGCC	AAAATCAAACGTGGTGA	TGCCCAAATTGCCGCTG	GAAAGGCTAAACAGCAC	240	
2	2 CTGATGGCCAAAATCAAACGTGGTGGTGGTGCCCAAATTGCCGCTGGAAAGGCTAAACAGCAC				240	

1	САСФФСФФА	accachteateatea			300	
2	GAGTIGITA	ACGGACTTCGATC <mark>ATGA</mark>	TTAAAACCIGGACCGAI	GATGCTTGGGCGGACTA	300	
	* * * * * * * * *	* * * * * * * * * * * * * * * * *	****	*****		
1			ACCCCA CA AMCA A ACCA		260	
2	CATGIAIIG	GCATGATCAAAACGACA	AGCGGACAATCAAACGA	ATTAATCAACTCATTCA	360	
_	*****	* * * * * * * * * * * * * * * * * *	****	***		
1					420	
1 2	AGCCATTGA	CCGTGACCCTTATAAAG CCGTGACCCTTATAAAG	GCATCGGAAAACCTGAG	CCACTTAGATATGCGCT CCACTTAGATATGCGCT	420	
2	******	* * * * * * * * * * * * * * * * * *	****	****	120	
1					400	
⊥ 2	AACCGGAAA AACCGGAAA	ATGGTCACGTCGGATTG ATGGTCACGTCGGATTG	ATCAGGAAAATCGCATC A <mark>a</mark> caggaaaatcgccatc	ΑΤΟΤΑCΑGCΑΤΤΓGΑΑΑΑ 'ΑΤΟΤΑCΑGCΑΤΤΓGΑΑΑΑ	480 480	
2	*******	*****************	*:************************************	****	100	
1		ͲϪϪͲϪͲͲͲͲϹϹϹϹͲϹϹϹ		523		
⊥ 2	GAACCACAT	TAATATTTTCGCCTGCC	GCACTCACTACAGTTAA	523		
-	******	+++++++++++++++++++++++++++++++++++++++	****			

RelB3/RelE3_{Lrh}

Сравнение нуклеотидных последовательностей генов и аминокислотных последовательностей белков с генами и белками штамма *L. rhamnosus* R0011 (число замен НК и АК). Жирным шрифтом отмечены штаммы из GenBank.

N⁰	Штамм	Антитоксин		Токсин	
		НК гена (282)	АК белка (93)	НК гена (288)	АК белка (95)
1-1	ATCC21052,	0	0	0	0
	40ст, 45д, 72зв				
1-2	7дст, 24дст	1	1	0	0
			V80F		
1-3	22гн, К32, 38к	1	0	2	1
					R62H
2	Lc705,	43	12	4 (из 186)	2 (из 61)
	ATCC8530,				
	CASL, LMS2-1,				
	2гн, 51гн, 80ст				
3	GG, HN001,	47 (из 273)	24 (из 90)	-	-
	50зв, 421-2, 26ск,				
	61ск				

1-1 1-2 1-3 2 3	ATCATCTCGATGGAAACAAAATCCCGTATCAGCGTGCGAATTGATACCAAAACCAAAGAA 60 ATCATCTCGATGGAAACAAAATCCCGTATCAGCGTGCGAATTGATACCAAAACCAAAGAA 60 ATCATCTCGATGGAAACAAAATCCCGTATCAGCGTGCGAATTGATACCAAAACCAAAGAA 60 TTCATGAACATGACCAAAAAATCCCGCCATCAGCGTTAGGATTGATACCAAAACTAAAGAA 60 ATCGCAAAAAATCCCGCCCCGCATCCCGCAATTGGATACCAAAACTAAAGAA 60 ATCGCAAAAAATCCCGCTATCCCGCAATTGGATTAACCAAAACTAAAGAA 51 ****
1-1 1-2 1-3 2 3	CGGGGCTCTCCATGTCCTCAATAGCATGGGACTAGATATGTCCTCAGCTATTAACATGTAT 120 CGGGCTCTCCATGTCCTCAATAGCATGGGACTAGATATGTCCTCAGCTATTAACATGTAT 120 CGGGCTCTCCATGTCCTCAATAGCATGGGACTAGATATGTCCTCAGCTATTAACATGTAT 120 CGAGCGCTCCATGTTCTTAATAGCATGGGACTAGATATTTCCTCGGCTATTAACATGTAC 120 CGAGCTCTCCATGTTCTTAATAGCATGGGACTAGAGAGATTCCTCGGCTATTAACATGTAC 120 CGAGCTCTCCATGTTCTTAATACGTCTGGGACTAGAGAGATTCCTCGGCTATTAACATGTAT 111 **.** ******** ** ***.* .***** ****
1-1 1-2 1-3 2 3	TTGAAACGCATTGGTGACACTGGTGAGTTGCCATTTACACCTGAAATGTCGTTCGCCGAT 180 TTGAAACGCATTGGTGACACTGGTGAGTTGCCATTTACACCTGAAATGTCGTTCGCCGAT 180 TTGAAACGCATTGGTGACACTGGTGAGTTGCCATTTACACCTGAAATGTCGTTCGCCGAT 180 CTGAAACGGATTGGTGACACCGGTGCATTGCCATTTACACCTCCAATGTCATTTGGTTGAT 180 TGGAAACGGATTGGTGACACCGGTGCATTGCCATTTACACCTCCAATGTCATTTGGTGAC 191 ****** ********** *****************
1-1 1-2 1-3 2 3	CAGCTTCAAGCTGCAGAAGCTGATGTTAAAGCGGGACGAACTAAGAGCTTCAAGACCGTT 240 CAGCTTCAAGCTGCAGAAGCTGATGTTAAAGCGGGACGAACTAAGAGCTTCAAGACCTTT 240 CAGCTTCAAGCTGCAGAAGCTGATGTTAAAGCGGGGGCGAACTAAGAGCTTCAAGACCGTT 240 CAGCTTCAAGTTGCAGAAGCTGATGTTAAAGCGGGGCGAATAAAAAGCTTCAAGACTGTC 240 CAGCTTCGATTTGCAGAAGCAGAGCTGATGTTAAAGCGGGGCGAATAAAAAGCTTCAAGACTGTC 240 CAGCTTCGATTTGCAGAAGCAGAGCTGATGTTAAAGCGGGGCGAATAAAAAGCTTCAAGACTGTT 231

1-1 1-2 1-3 2 3	GATGCCCTGATGAAGGATTTATACA <mark>ATG</mark> ATGTTGACGAT TAA TCGCACGCGCACTTTCAA GATGCCCTGATGAAGGATTTATACA ATG ATGTTGACGAT TAA TCGCACGCGCACTTTCAA GATGCCCTGATGAAGGATTTATACA ATG ATGTTGACGAT TAA TCGCACGCGCACTTTCAA GATGC TT TGATGAAGGATTTATACA G TGATGTTGACGAT TAA CTGCATGCATATTGACAG G G TGC TT TGATGAAGGATTTATACA G TGATGTTGACG <mark>GTTAA</mark>	300 300 300 300 273
1-1 1-2 1-3 2 3	ACGACAATTTAAACATCTTCTTAGGCAAGGTAAAGATATGACGAAACTTGCAACTGCAAT ACGACAATTTAAACATCTTCTTAGGCAAGGTAAAGATATGACGAAACTTGCAACTGCAAT ACGACAATTTAAACATCTTCTTAGGCAAGGTAAAGATATGACGAAACTTGCAACTGCAAT <mark>GCA</mark> ACAA	360 360 360 307
1-1 1-2 1-3 2 3	TGATACTTTGCAGCGTCAAGATCGTGTAAAATTAGCTTCTTTACACGACCATGCTTTAAA TGATACTTTGCAGCGTCAAGATCGTGTAAAATTAGCTTCTTTACACGACCATGCTTTAAA TGATACTTTGCAGCGTCAAGATCGTGTGAAATTAGCTTCTTTACACGACCATGCTTTAAA CT <mark>TTG</mark> CAGCGTCAAGGTCATGTAAAATTAGCTTCTCTACATGACCATGCTTTAAA	420 420 420 362
1-1 1-2 1-3 2 3	GGGTGCTCACAGCGGCGAACGAGCATTGCGTGTTGCTCCTGATTGGCTTCTCGTTTATAA GGGTGCTCACAGCGGCGAACGAGCATTGCGTGTTGCTCCTGATTGGCTTCTCGTTTATAA GGGTGCTCACAGCGGCGAACGAGCATTGCATGTTGCTCCTGATTGGCTTCTCGTTTATAA GGGTGCTCACAGCGGCGAACGAGCATTGCGTGTTGCTCCTGATTGGCTTCTCGTTTATAA	480 480 480 422
1-1 1-2 1-3 2 3	AGTCGATGCTGAAGCGTTAATTTTAATGCTTCTTGCAACAGGCACACACCGCGATACATT AGTCGATGCTGAAGCGTTAATTTTAATGCTTCTTGCAACAGGCACACACCGCGATACATT AGTCGATGCTGAAGCGTTAATTTTAATGCTTCTTGCAACAGGCACACACCGCGATACATT AGTCGATGCTGAAGCGTTAATTTTAATGCTTCTTGCAACAGGCACACACCGCGATACATT	540 540 540 482
1-1 1-2 1-3 2 3	GAACATTGAGTAA553GAACATTGAGTAA553GAACATTGAGTAA553GAACATTGAGTAA495	

Нуклеотидные последовательности TA систем Lactobacillus casei

RelBE1_{Lcs}

Сравнение нуклеотидных последовательностей генов и аминокислотных последовательностей белков с генами и белками штамма *L. casei* BL23 (число замен НК и АК). Жирным шрифтом отмечены штаммы из GenBank.

N⁰	Штамм	Антитоксин Токс		син	
		НК гена (270)	АК белка (89)	НК гена (234)	АК белка (78)
1	BD-II, LC2W,	0	0	0	0
	W56, 17к, 42ст,				
	48ст, 51ст,				
2	гКНМ577	1	0	10	2
					D2N
					K57E
3	20011, гКНМ23	3	0	10	3
					H42V
					K57E
					G77V
4	K ₃ III ₂₄	4	1	10	3
			E72Q		H42V
					K57E
					G77V

Антитоксин

1 2 3 4	ATG GCAGCCACAAAGAAAGAAACTCGCTTGAATATTCGTGTTGATCCGGAATTAAAAAGT ATGGCAGCCACAAAGAAGAAACTCG <mark>T</mark> TTGAATATTCGTGTTGATCCGGAATTAAAAAGT ATGGCAGCCACAAAGAAGGAAACTCGCTTGAATATTCGTGTTGATCCTGAATTAAAAAGT ATGGCAGCCACAAAGAA <mark>G</mark> GAAACTCGCTTGAATATTCGTGTTGATCCTGAATTAAAAAGT ******************	60 60 60 60
1	GCTGCTCAAATCGTAGCAAATGATATGGGCATCGACTTGACCGCAGCTGTTACTATGTTC	120
2	GCTGCTCAAATCGTAGCAAATGATATGGGCATCGACTTGACCGCAGCTGTTACTATGTTC	120
3	GCTGCTCAAATCGTAGCAAATGATATGGGCATCGACTTGACCGCAGCTGTTAC <mark>G</mark> ATGTTC	120
4	GCTGCTCAAATCGTAGCAAATGATATGGGCATCGACTTGACCGCAGCTGTTAC <mark>G</mark> ATGTTC	120

1	ATGACGAAAATGGTGAAAGATCACGCCCTCCCGTTTACCCCAACAAGTCTACCAGTTGAA	180
2	ATGACGAAAATGGTGAAAGATCACGCCCTCCCGTTTACCCCAACAAGTCTACCAGTTGAA	180
3	ATGACGAAAATGGTGAAAGATCACGCCCTCCCGTTTACCCCAACAAGTCTACCAGTTGAA	180
4	ATGACGAAAATGGTGAAAGATCACGCCCTCCCGTTTACCCCAACAAGTCTACCAGTTGAA	180

1	ACCTTACAGGCGCTGAAAGAAGCAAAGCACCCAGAGCTGCTCAAAAAATACAGCACGCCT	240
2	ACCTTACAGGCGCTGAAAGAAGCAAAGCACCCAGAGCTGCTCAAAAAATACAGCACGCCT	240
3	ACCTTACAGGCGCTGAAAGAAGCAAAGCACCCAGAGCTGCTCAAAAAATACAGCACGCCT	240
4	ACCTTACAGGCGCTGAAAGAAGCAAAGCACCCA <mark>C</mark> AGCTGCTCAAAAAATACAGCACGCCT	240

1	GATGACATGTGGAGAGACTTGAATGTA	270
2	GATGACATGTGGAGAGACTTGAATGTA	270
3	GATGACATGTGGAGAGACTTGAATGTA	270
4	GATGACATGTGGAGAGACTTGAATGTA	270

Токсин

1 2 3 4	ATGGACGAACTAAAGACGGCTGTTAATCTCCTAGCTGCTGGTACAAATGCTGAACTATTA ATGACGAACTAAAGACGGCTGTTAATCTCCTAGCCGCTGGTACAAATGCCAGACTATTA ATGGACGAACTAAAGACGGCTGTTAATCTCCTAGCCGCTGGTACAAATGCTGAACTATTA ATGGACGAACTAAAGACGGCTGTTAATCTCCTAGCCGCTGGTACAAATGCTGAACTATTA ***.******************************	60 60 60 60
1 2 3	AGCAAAAAGTATGCAGATCATGCCTTGTCTTCAAGCAGCGAGTGGAAAGGATATCGTGAA AGCAAAAAGTATGCAGATCATGCCTTGTCC AGCAAAAAGTATGCAGATCATGCCTTGTCC	120 120 120
4		120
2		180
3	CTATATGTTGACGGCCCTCGTGGCGACTGGTTGCTAATCTATAAATTGAGCAGCAAGAT	180
4	CTA <mark>T</mark> ATGTTGACGGCCCTCGTGGCGACTGGTTGCTAATCTATAAAATT <mark>G</mark> AGCAGCAAGAT	180
1	CTCATTTTGACCCTGGTTAGAACTGGATCTCATCATAACCTTTTGGGTAAA	
2	CT <mark>T</mark> ATTTT <mark>A</mark> ACCCT <mark>A</mark> GTTAGAAC <mark>C</mark> GGATCTCATCATAACCTT <mark>C</mark> TGGGTAAA UW 234	
3	CT <mark>T</mark> ATTTT <mark>A</mark> ACCCT <mark>A</mark> GTTAGAAC <mark>C</mark> GGATCTCATCATAACCTT <mark>C</mark> TGG <mark>T</mark> TAAATAC 234	
4	CT <mark>T</mark> ATTTT <mark>A</mark> ACCCT <mark>A</mark> GTTAGAAC <mark>C</mark> GGATCTCATCATAACCTT <mark>C</mark> TGG T TAAA LUU 234	

Нуклеотидные последовательности ТА систем Lactobacillus helveticus

Сравнение нуклеотидных последовательностей генов и аминокислотных последовательностей белков с генами и белками штамма *L. helveticus* DCP4571 (число замен НК и АК). Жирным шрифтом отмечены штаммы из GenBank.

N⁰	Штамм	Антитоксин Токси		ин	
		НК гена (279)	АК белка (92)	НК гена (348)	АК белка (115)
1	MTCC5463,	0	0	1	1
	NNIE				D58G
2	H10	0	0	на 3 нк ген больше	На 1 ак белок
				2	больше
					2
					V32A
					D58G
					+№103: L
3	R0052	0	0	3	3
					V17A
					D43G
					G83S
4	100аш,	1	1	3	3
	Er315/402,		№85: E→D		V32A
	NK1				D58G
					P73L

Антитоксин

RelBE1_{Lhv}

1 2 3 4	ATCACAGTAGCATTAACTCAAAGCGACTTTAGAGCGCACATTAAAAAATATTTAGATCAA ATCACAGTAGCATTAACTCAAAGCGACTTTAGAGCGCACATTAAAAAATATTTAGATCAA ATCACAGTAGCATTAACTCAAAGCGACTTTAGAGCGCACATTAAAAAATATTTAGATCAA ATCACAGTAGCATTAACTCAAAGCGACTTTAGAGCGCACATTAAAAAATATTTAGATCAA	60 60 60 60
1 2	GTAAACGATGATGATGAGACAGTTTATGTTGCCAGATCAAATAGTCGTAGTGTTGCAGTA GTAAACGATGATGATGAGACAGTTTATGTTGCCAGATCAAATAGTCGTAGTGTTGCAGTA	120 120
3	GTAAACGATGATGATGAGACAGTTTATGTTGCCAGATCAAATAGTCGTAGTGTTGCAGTA	120
4	GTAAACGATGATGATGAGACAGTTTATGTTGCCAGATCAAATAGTCGTAGTGTTGCAGTA ***********************************	120
1	ATTTCTCAGGAAAAGATGTATTGGATGGAGAAAGCTATACAAGCAAAAGAAGATTCATTA	180
2	ATTTCTCAGGAAAAGATGTATTGGATGGAGAAAGCTATACAAGCAAAAGAAGATTCATTA	180
3	ATTTCTCAGGAAAAGATGTATTGGATGGAGAAAGCTATACAAGCAAAAGAAGATTCATTA	180
4	ATTTCTCAGGAAAAGATGTATTGGATGGAGAAAGCTATACAAGCAAAAGAAGATTCATTA	180

159

160

1	GATTACGCTGTTGCTCGTGATCAATTAATTCGTAGAAATGTTTTGCCTGATGACCCAATT	240
2	GATTACGCTGTTGCTCGTGATCAATTAATTCGTAGAAATGTTTTGCCTGATGACCCAATT	240
3	GATTACGCTGTTGCTCGTGATCAATTAATTCGTAGAAATGTTTTGCCTGATGACCCAATT	240
4	GATTACGCTGTTGCTCGTGATCAATTAATTCGTAGAAATGTTTTGCCTGATGACCCAATT	240

1	GTTGAATCCAATGATGATTATTGGGAGAAATTTAAA 279	
2	GTTGAATCCAATGATGATTATTGGGAGAAATTTAAA A 279	
3	GTTGAATCCAATGATGATTATTGGGAGAAATTTAAA 744 279	
4	GTTGAATCCAATGA <mark>G</mark> GATTATTGGGAGAAATTTAAA <mark>1</mark> 000 279	

3	GTTGAATCCAATGAT	'GATTATTGGGAGAAATTTAAA
4	GTTGAATCCAATGA <mark>G</mark>	GATTATTGGGAGAAATTTAAA
	* * * * * * * * * * * * * *	*****

Токсин

1 2 3 4	ATC TCAAAATTAGTATTTAGACCACGTGCAACATTTAATGCTGATATGAGACGTCTTGGA ATC TCAAAATTAGTATTTAGACCACGTGCAACATTTAATGCTGATATGAGACGTCTTGGA ATC TCAAAATTAGTATTTAGACCACGTGCAACATTTAATGCTGATATGAGACGTCTTGGA **********************************	60 60 15 60
1 2 3 4	AAACTTGATCCAACAATAATTGATGACGTCAGAGTAGCTATCGAAGAATTACTCGAAACT AAACTTGATCCAACAATAATTGATGACGTCAGAGCAGCTATCGAAGAATTACTCGAAACT AAACTTGATCCAACAATAATTGATGACGTCAGAGCAGCTATCGAAGAATTACTCGAAACT AAACTTGATCCAACAATAATTGATGACGTCAGAGCAGCTATCGAAGAATTACTCGAAACT **********************************	120 120 75 120
1 2 3 4	GGTACGTTATCTGAAGAATATCGTGACCATCCTTTAAAAAGGCGACTAGCTG <mark>G</mark> TTATCGC GGTACGTTATCTGAAGAATATCGTGACCATCCTTTAAAAAGGCGACTAGCTGGTTATCGC GGTACGTTATCTGAAGAATATCGTGACCATCCTTTAAAAAGGCGACTAGCTG <mark>G</mark> TTATCGC GGTACGTTATCTGAAGAATATCGTGACCATCCTTTAAAAAGGCGACTAGCTG <mark>G</mark> TTATCGC ***********************************	180 180 135 180
1 2 3 4	GAATTTCATGTTAGAGATACCCCTAAAGGTGAGCAGCCTAACGATATAAATGATGTATTA GAATTTCATGTTAGAGATACCCCTAAAGGTGAGCAGCCTAACGATATAAATGATGTATTA GAATTTCATGTTAGAGATACCCCTAAAGGTGAGCAGCCTAACGATATAAATGATGTATTA GAATTTCATGTTAGAGATACCCCTAAAGGTGAGCAGCTTAACGATATAAATGATGTATTA *********************	240 240 195 240
1 2 3 4	GTCATTTGGTATATTGAACACAATAACTTAGTGGTAGTTGGTGTACGAGTAGGCTCTCAC GTCATTTGGTATATTGAACACAATAACTTAGTGGTAGTTGGTGTACGAGTAGGCTCTCAC GTCATTTGGTATATTGAACACAATAACTTAGTGGTAGTTGGTGTACGAGTAA GTCATTTGGTATATTGAACACAATAACTTAGTGGTAGTTGGTGTACGAGTAGGCTCTCAC ********************************	300 300 255 300
1 2 3 4	CAACGACTGTTTCCAGGTTTAAATAAGTCTAGAAAGTTTCGTAAA. 348 CAACG <mark>ACT</mark> ACTGTTTCCAGGTTTAAATAAGTCTAGAAAGTTTCGTAAA. 351 CAACGACTGTTTCCAGGTTTAAATAAGTCTAGAAAGTTTCGTAAA. 303 CAACGACTGTTTCCAGGTTTAAATAAGTCTAGAAAGTTTCGTAAA. 348	

Сравнение нуклеотидных последовательностей генов и аминокислотных последовательностей белков с генами и белками штамма *L. helveticus* DCP4571 (число замен НК и АК). Жирным шрифтом отмечены штаммы из GenBank.

N	♀ Штамм	Ток	син
		НК гена (300)	АК белка (99)
1	NNIE	1	0
2	2 MTCC5463	2	0
3	H10	2	1
5		2	E32K
4	100au	2	2
	Er315/402 NK1		W84C
			W85G
5	R0052	<u>/</u>	2
5	K0052	Т	2 Ρ55 Δ
			T JJA W94C
			W 84C
******** TTTATAT TTTATAT TTTATATA TTTATATA	**************************************	* • **********************************	* ************ ATCCTTTAATTAGA : ATCCTTTAATTAGA : ATCCTTTAATTAGA : ATCCTTTAATTAGA :
FTATAT#	AAAACTTATCGCAAAATCCA	ATAATGAATTGGAAACCG	ATCCTTTAATTAGA 2
TCATCAT			
ICATCATT	ITTGAGCTCTTAGCCAAAA	GAGGCGTTAAGCCACCTG	TATATTCAAAAAGG
CATCAT1	ITTGAGCTCTTAGCCAAAA(ITTGAGCTCTTAGCCAAAA(GAGGCGTTAAGCCACCTG GAGGCGTTAAGCCACCTG	TATATTCAAAAAGG 1 TATATTCAAAAAGG 1
ידים יוים יו	TTTGAGCTCTTAGCCAAAA(TTTGAGCTCTTAGCCAAAA(TTTGAGCTCTTAGCCAAAA(GAGGCGTTAAGCCACCTG GAGGCGTTAAGCCACCTG GAGGCGTTAAGCCACCTG	TATATTCAAAAAGG 1 TATATTCAAAAAGG 1 TATATTCAAAAAGG 1
	FTTGAGCTCTTAGCCAAAA(FTTGAGCTCTTAGCCAAAA(FTTGAGCTCTTAGCCAAAA(FTTGAGCTCTTAGCCAAAA(FTTGAGCTCTTAGCCAAAA(GAGGCGTTAAGCCACCTG GAGGCGTTAAGCCACCTG GAGGCGTTAAGCCACCTG GAGGCGTTAAGCCACCTG	TATATTCAAAAAGG 1 TATATTCAAAAAGG 1 TATATTCAAAAAGG 1 TATATTCAAAAAGG 1 TATATTCAAAAAGG 1
CTCATCAT	TTTGAGCTCTTAGCCAAAA(TTTGAGCTCTTAGCCAAAA(TTTGAGCTCTTAGCCAAAA(TTTGAGCTCTTAGCCAAAA(TTTGAGCTCTTAGCCAAAA(*******	GAGGCGTTAAGCCACCTG GAGGCGTTAAGCCACCTG SAGGCGTTAAGCCACCTG GAGGCGTTAAGCCACCTG GAGGCGTTAAGCCA <mark>G</mark> CTG *******	TATATTCAAAAAGG TATATTCAAAAAGG TATATTCAAAAAGG TATATTCAAAAAGG TATATTCAAAAAGG *****
CATCAT ********	TTTGAGCTCTTAGCCAAAA(TTTGAGCTCTTAGCCAAAA(TTTGAGCTCTTAGCCAAAA(TTTGAGCTCTTAGCCAAAA(TTTGAGCTCTTAGCCAAAA(********************************	GAGGCGTTAAGCCACCTG GAGGCGTTAAGCCACCTG GAGGCGTTAAGCCACCTG GAGGCGTTAAGCCACCTG GAGGCGTTAAGCCA <mark>G</mark> CTG ************************************	TATATTCAAAAAGG TATATTCAAAAAGG TATATTCAAAAAGG TATATTCAAAAAGG TATATTCAAAAAGG *******************************
ICATCAT ******** FAGCCAGO	TTTGAGCTCTTAGCCAAAA(TTTGAGCTCTTAGCCAAAA(TTTGAGCTCTTAGCCAAAA(TTTGAGCTCTTAGCCAAAAA TTTGAGCTCTTAGCCAAAAA ******************************	GAGGCGTTAAGCCACCTG GAGGCGTTAAGCCACCTG GAGGCGTTAAGCCACCTG GAGGCGTTAAGCCACCTG SAGGCGTTAAGCCAC <mark>G</mark> CTG ************************************	TATATTCAAAAAGG TATATTCAAAAAGG TATATTCAAAAAGG TATATTCAAAAAGG TATATTCAAAAAGG *******************************
CATCAT CATCAT CAGCCAGO CAGCCAGO	TTTGAGCTCTTAGCCAAAA TTTGAGCTCTTAGCCAAAA TTTGAGCTCTTAGCCAAAA TTTGAGCTCTTAGCCAAAA TTTGAGCTCTTAGCCAAAA TTGAGCTCTTAGCCAAAA A ATTGAGCTCTTAGCCAAAAA GATAATCGAATTGTGTACTC GATAATCGAATTGTGTACTC	GAGGCGTTAAGCCACCTG GAGGCGTTAAGCCACCTG GAGGCGTTAAGCCACCTG GAGGCGTTAAGCCACCTG GAGGCGTTAAGCCA <mark>G</mark> CTG ************************************	TATATTCAAAAAGG TATATTCAAAAAGG TATATTCAAAAAGG TATATTCAAAAAGG TATATTCAAAAAGG *******************************
PAGCCAGO AGCCAGO AGCCAGO AGCCAGO AGCCAGO	TTTGAGCTCTTAGCCAAAA TTTGAGCTCTTAGCCAAAA TTTGAGCTCTTAGCCAAAA TTTGAGCTCTTAGCCAAAA TTTGAGCTCTTAGCCAAAA TTTGAGCTCTTAGCCAAAA TTTGAGCTCTTAGCCAAAA GATAATCGAATTGTGTACTC GATAATCGAATTGTGTACTC GATAATCGAATTGTGTACTC	GAGGCGTTAAGCCACCTG GAGGCGTTAAGCCACCTG GAGGCGTTAAGCCACCTG GAGGCGTTAAGCCACCTG SAGGCGTTAAGCCA <mark>G</mark> CTG ************************************	TATATTCAAAAAGG TATATTCAAAAAGG TATATTCAAAAAGG TATATTCAAAAAGG TATATTCAAAAAGG TATATTCAAAAAGG *******************************
CATCAT CATCAT CAGCCAGO CAGCCAGO CAGCCAGO CAGCCAGO CAGCCAGO	TTTGAGCTCTTAGCCAAAA(TTTGAGCTCTTAGCCAAAA(TTTGAGCTCTTAGCCAAAAA TTTGAGCTCTTAGCCAAAAA TTTGAGCTCTTAGCCAAAAA ATTGAGCTCTTAGCCAAAAA SATAATCGAATTGTGTACTC GATAATCGAATTGTGTACTC GATAATCGAATTGTGTACTC GATAATCGAATTGTGTACTC GATAATCGAATTGTGTACTC SATAATCGAATTGTGTACTC	GAGGCGTTAAGCCACCTG GAGGCGTTAAGCCACCTG GAGGCGTTAAGCCACCTG GAGGCGTTAAGCCACCTG SAGGCGTTAAGCCACG *******************************	TATATTCAAAAAGG TATATTCAAAAAGG TATATTCAAAAAGG TATATTCAAAAAGG TATATTCAAAAAGG *******************************
AGCCAGC AGCCAGC AGCCAGC AGCCAGC AGCCAGC AGCCAGC AGCCAGC AGCCAGC AGCCAGC	TTTGAGCTCTTAGCCAAAA(TTTGAGCTCTTAGCCAAAA(TTTGAGCTCTTAGCCAAAA(TTTGAGCTCTTAGCCAAAA(TTTGAGCTCTTAGCCAAAA(********************************	GAGGCGTTAAGCCACCTG GAGGCGTTAAGCCACCTG GAGGCGTTAAGCCACCTG GAGGCGTTAAGCCACCTG GAGGCGTTAAGCCA <mark>G</mark> CTG ************************************	TATATTCAAAAAGG TATATTCAAAAAGG TATATTCAAAAAGG TATATTCAAAAAGG TATATTCAAAAAGG TATATTCAAAAAGG AAGAGGTAATTATT AAGAGGTAATTATT AAGAGGTAATTATT AAGAGGTAATTATT AAGAGGTAATTATT AAGAGGTAATTATT AAGAGGTAATTATT AAGAGGTAATTATT AAGAGGTAATTATT AAGAGGTAATTATT AAGAGGTAATTATT
AGCCAGC AGCCAGC AGCCAGC AGCCAGC AGCCAGC AGCCAGC AGCCAGC ****** AGTGCCT	TTTGAGCTCTTAGCCAAAA(TTTGAGCTCTTAGCCAAAA(TTTGAGCTCTTAGCCAAAA(TTTGAGCTCTTAGCCAAAA(TTTGAGCTCTTAGCCAAAA(********************************	GAGGCGTTAAGCCACCTG GAGGCGTTAAGCCACCTG GAGGCGTTAAGCCACCTG GAGGCGTTAAGCCACCTG GAGGCGTTAAGCCACCTG ***********************************	TATATTCAAAAAGG I TATATTCAAAAAAGG I TATATTCAAAAAAGG I TATATTCAAAAAAGG I TATATTCAAAAAAGG I TATATTCAAAAAAGG I AAGAGGTAATTATT I AAGAGGTAATTATT I AAGAGGTAATTATT I AAGAGGTAATTATT I AAGAGGTAATTATT I AAGAGGTAATTATT I AAGAGGTAATTATT I AAGAAGTAATT
AGCCAGO AGCCAGO AGCCAGO AGCCAGO AGCCAGO AGCCAGO ****** AGTGCCI AGTGCCI	TTTGAGCTCTTAGCCAAAA(TTTGAGCTCTTAGCCAAAA(TTTGAGCTCTTAGCCAAAAA TTTGAGCTCTTAGCCAAAAA TTTGAGCTCTTAGCCAAAAA TTTGAGCTCTTAGCCAAAAA ******************************	GAGGCGTTAAGCCACCTG GAGGCGTTAAGCCACCTG GAGGCGTTAAGCCACCTG GAGGCGTTAAGCCACCTG GAGGCGTTAAGCCACCTG ***********************************	TATATTCAAAAAGG T TATATTCAAAAAGG T TATATTCAAAAAGG T TATATTCAAAAAGG T TATATTCAAAAAGG T TATATTCAAAAAGG T AAGAGGTAATTATT 2 AAGAGGTAATTATT 2 AAGAGGTAATTATT 2 AAGAGGTAATTATT 2 AAGAGGTAATTATT 2 AAGAGGTAATTATT 2 AAGAGGTAATTATT 2 AAGAGGTAATTATT 2 AAGAAGAAAATT ATAACAAAATT
AGCCAGO AGCCAGO AGCCAGO AGCCAGO AGCCAGO AGCCAGO ****** AGTGCCI AGTGCCI AGTGCCI	TTTGAGCTCTTAGCCAAAAA TTTGAGCTCTTAGCCAAAAA TTTGAGCTCTTAGCCAAAAA TTTGAGCTCTTAGCCAAAAA TTTGAGCTCTTAGCCAAAAA TTTGAGCTCTTAGCCAAAAA SATAATCGAATTGTGTACTC GATAATCGAATTGTGTACTC GATAATCGAATTGTGTACTC GATAATCGAATTGTGTACTC GATAATCGAATTGTGTACTC GATAATCGAATTGTGTACTC GATAATCGAATTGTGTACTC GATAATCGAATTGTGTGTACTC CGGTGGCATTATTCGAGTGG IGGTGGCATTATTCGAGTGG IGGTGGCATTATTCGAGTGG	GAGGCGTTAAGCCACCTG GAGGCGTTAAGCCACCTG GAGGCGTTAAGCCACCTG GAGGCGTTAAGCCACCTG GAGGCGTTAAGCCACCTG CAGTGATCTAAGCCAGCTG CAGTTGATCTAAAAAGCA CAGTTGATCTAAAAAGCA CAGTTGATCTAAAAAGCA CAGTTGATCTAAAAAGCA CAGTTGATCTAAAAAGCA CAGTTGATCTAAAAAGCA CAGTTGATCTAAAAAGCA CAGTCAAAGCTTGATTC CAATCAAAGCTTGATTC CAATCAAAGCTTGATTC CAATCAAAGCTTGATTC	TATATTCAAAAAGG TATATTCAAAAAGG TATATTCAAAAAGG TATATTCAAAAAGG TATATTCAAAAAGG TATATTCAAAAAGG TATATTCAAAAAGG *******************************

Сравнение нуклеотидных последовательностей генов и аминокислотных последовательностей белков с генами и белками штамма *L. helveticus* H10 (число замен HK и AK). Жирным шрифтом отмечены штаммы из GenBank.

№	Штамм	Антитоксин		Тог	ксин
		НК гена (309)	АК белка (102)	НК гена (270)	АК белка (89)
1	100аш,	0	0	2	1
	Er315/402,				I69M
	NK1, NNIE				
2	R0052	1	0	1	1
					I69M
3	MTCC5463	2	1	2	1
			T4P		I69M
			E76K		

Антитоксин

1 2 3	ATCCTACAAACACCAAATAATATTAAAGCAGTTACTGCTCGTGACCTACGTAATAACTTT AFCCTACAAACACC <mark>T</mark> AATAATATTAAAGCAGTTACTGCTCGTGACCTACGTAATAACTTT ATCCTACAACCACCAAATAATATTAAAGCAGTTACTGCTCGTGACCTACGTAATAACTTT *********	60 60 60
1 2 3	AAAAAAATTGCTGATGACATTAATGACTATGATACTACAGTTATTGTTGCTCGTCCTAAA AAAAAAATTGCTGATGACATTAATGACTATGATACTACAGTTATTGTTGCTCGTCCTAAA AAAAAAATTGCTGATGACATTAATGACTATGATACTACAGTTATTGTTGCTCGTCCTAAA ********************************	120 120 120
1 2 3	GACAAAAACGTCGTAATTATTTCACAAAAAGAATATGATTCATGGCAAGAGACCTCATAT GACAAAAACGTCGTAATTATTTCACAAAAAGAATATGATTCATGGCAAGAGACCTCATAT GACAAAAACGTCGTAATTATTTCACAAAAAGAATATGATTCATGGCAAGAGACCTCATAT ******************************	180 180 180
1 2 3	CTTCTAGGGACTAAGGCAAATCGTGATGCATTAGCAGAAGCTAAAGAATCGTTTGAAAAT CTTCTAGGGACTAAGGCAAATCGTGATGCATTAGCAGAAGCTAAAGAATCGTTTGAAAAT CTTCTAGGGACTAAGGCAAATCGTGATGCATTAGCAGAAGCTAAA <mark>A</mark> AATCGTTTGAAAAT *****************************	240 240 240
1 2 3	AAAGATACCCGAAACAAAATCTTAACCCCAGAAGAATTCGAGGCTCTAACTAA	300 300 300
1 2 3	GAAGCT 309 GAAGCT 309 GAAGCT 309 SAAGCT 309	

Токсин

1 2 3	ATGACGAAGCTTAACGTAAATTTTAACTATAATGCCTGGGATGAATATCTAGAGTGGAAG ATGACGAAGCTTAACGTAAATTTTAACTATAATGCCTGGGATGAATATCTAGAGTGGAAG ATGACGAAGCTTAACGTAAATTTTAACTATAATGCCTGGGATGAATATCTAGAGTGGAAG ************	60 60 60
1 2 3	AAAGAAGATAAAAAAACTTCAAAGAAAATCGATGGTCTCATTAGAGATTGTCAACGCCAT AAAGAAGATAAAAAAACTTCAAAGAAAATCGATGGTCTCATTAGAGATTGTCAACGCCAT AAAGAAGATAAAAAAACTTCAAAGAAAATCGATGGTCTCATTAGAGATTGTCAACGCCAT ***********************************	120 120 120
1 2 3	CCATTCACTGGAAAAGGAAAACCTGAGCCTTTAAAGGCAAATTTAAGCGGTACATGGTCT CCATTCACTGGAAAAGGAAAACCTGAGCCTTTAAAGGCAAATTTAAGCGGTACATGGTCT CCATTCACTGGAAAAGGAAAACCTGAGCCTTTAAAGGCAAATTTAAGCGGTACATGGTCT *********************************	180 180 180
1 2 3	CGAAAAAT <mark>C</mark> AATCACAAAGATCGTAT <mark>G</mark> GTTTATTCAGTTACGGCAACAGAACTTCAAATA CGAAAAATTAATCACAAAGATCGTATGGTTTATTCAGTTACGGCAACAGAACTTCAAATA CGAAAAAT <mark>C</mark> AATCACAAAGATCGTAT <mark>G</mark> GTTTATTCAGTTACGGCAACAGAACTTCAAATA ******** *************************	240 240 240
1 2 3	TGGCAACTAAAATATCACTATTCTAAA270TGGCAACTAAAATATCACTATTCTAAA270TGGCAACTAAAATATCACTATTCTAAA270***********************************	

RelBB4_{Lhv}

Сравнение нуклеотидных последовательностей генов и аминокислотных последовательностей белков с генами и белками штамма *L. helveticus* H10 (число замен НК и АК). Жирным шрифтом отмечены штаммы из GenBank.

N⁰	Штаммы	Антитоксин_1		Антит	оксин_2
		НК гена (168)	АК белка (55)	НК гена (309)	АК белка (102)
1	MTCC5463,	0	0	0	0
	R0052				
2	DPC4571, 100ash	0	0	2	2
	Er315/402, NK1,				P55S
	NNIE				A71P

Антитоксин

1 2	ATCAAGAAAGAAACGATTAATATTCAATTGGACAAGGACATCGTTAATACGGCAAAAGCA ATCAAGAAAGAAACGATTAATATTCAATTGGACAAGGACATCGTTAATACGGCAAAAGCA ***************************	60 60
1 2	ATTCTAAAAGAAAATAATTTTAGCCATAGATGATGCGGTTAAAATGTTGTATAGCCAATTT ATTCTAAAAGAAAATAATTTAGCCATAGATGATGCGGTTAAAATGTTGTATAGCCAATTT ********************************	120 120
1 2	GTTTTAACTGGGCAGTTACCGTTTAAAATTGGTAAAGGGAAGAATTAA 168 GTTTTAACTGGGCAGTTACCGTTTAAAATTGGTAAAGGGAAGAAT TAA 168 ************************************	

Токсин

1 2	ATCGATTACAAAGATCAAACTTCGATGCAAAAAACACAACTAAGCATTTCCGTTGATGAA ATCGATTACAAAGATCAAACTTCGATGCAAAAAACACAACTAAGCATTTCCGTTGATGAA ******************************	60 60
1 2	GATTTAGCTAAGGATGTCCAAGAAAAATTAGAAATGCTAGGATTAGATCAAAGTGATTTT GATTTAGCTAAGGATGTCCAAGAAAAATTAGAAATGCTAGGATTAGATCAAAGTGATTTT ****************************	120 120
1 2	TTAATAGGCCTTTTGACTAATATAGCTAATAATAAAAAATTACCTTTTAGCAAGCTTACT TTAATAGGCCTTTTGACTAATATAGCTAATAATAAAAAATTA <mark>T</mark> CTTTTAGCAAGCTTACT *********************************	180 180
1 2	AATGAAGAAGAGGAAAAAGCAATATTGGCTGCTAAATTAAGTGCATTAACAACGAGCTGG AATGAAGAAGAGGAAAAAGCAATATTGGCT <mark>C</mark> CTAAATTAAGTGCATTAACAACGAGCTGG **********************************	240 240
1 2	GGAAATATTCCTGAGTTAAAGAATTTACAACAGTTGAAAGAGTGGCTGAATGAA	300 300
1 2	AACGATTAA 309 AACGATTAA 309 ******	

RelBE5_{Lhv}

Сравнение нуклеотидных последовательностей генов и аминокислотных последовательностей белков с генами и белками штамма *L. helveticus* DPC4571 (число замен НК и АК). Жирным шрифтом отмечены штаммы из GenBank.

№	Штаммы	Антитоксин		То	ксин
		НК гена (315)	АК белка (104)	НК гена (882)	АК белка (293)
1	H10, R0052,	0	0	1	1
	100ash, Er315/402,				D152G
	NK1, NNIE				
2	MTCC5463	1	1	3	2
			L87I		D152G
					A279T

Антитоксин

1 2	ATGGCAGAAAAAACAACAGGACTTTATGTCAGAATGAATCCAGAAAAGAAGAAGGAAAAGGCA ATGGCAGAAAAAACAACAGGACTTTATGTCAGAATGAATCCAGAAAAGAAGAAGGAAAAGGCA ***************	60 60
1 2	GAAGCTATTCTGAAAAAGCTGGGGTTAAATTCAGCTACGGCAATTAACATGTTCTATGAT GAAGCTATTCTGAAAAAGCTGGGGTTAAATTCAGCTACGGCAATTAACATGTTCTATGAT *********************************	120 120
1 2	CAGATTATTCTTCATAATGGTATTCCTTTCAGAGTAGAGATTCCAAATGCATGGGATAAT CAGATTATTCTTCATAATGGTATTCCTTTCAGAGTAGAGATTCCAAATGCATGGGATAAT *****************************	180 180
1 2	TTGGATCAAATGAATAAGTATGAATACGCCAAACTGCTTGACGAGCGCCTGAACACATTG TTGGATCAAATGAATAAGTATGAATACGCCAAACTGCTTGACGAGCGCCTGAACACATTG ***********************************	240 240
1 2	AACGGAAGGGAAGATTTACTTGGAGATATCGCCAAGAGGCTTGATGCGGAAAAGAATGAA AACGGAAGGGAAG	300 300
1 2	AAGAAAGACAACTAA 315 AAGAAAGACAACTAA 315 ******	

Токсин

1 2	ATGATGGCAAGAATTATTATTGGCATTATTGTTGTTGTTAGTTA	60 60
1 2	GGTTTTAAAATCGTTCCACAAAATAATGAAGGTTTGGTTGAAACCTTGGGTAAGTATTCT GGTTTTAAAATCGTTCCACAAAATAATGAAGGTTTGGTTGAAACCTTGGGTAAGTATTCT *********************************	120 120
1 2	AAGACAGTAAAAGCTGGATTTATCTTTGTCTGGCCACTTTTCCAAAGAATTCGCAAAGTT AAGACAGTAAAAGCTGGATTTATCTTTGTCTGGCCACTTTTCCAAAGAATTCGCAAAGTT *********************************	180 180
1 2	CCATTAGCACTTCAACCACTTGAAATTTCTAAGTACTCAATCATTACCAAAGATAACGCT CCATTAGCACTTCAACCACTTGAAATTTCTAAGTACTCAATCATTACCAAAGATAACGCT ***********************************	240 240
1 2	GAAATTTCTACTAGTTTAACTTTGAACTACTTGGTCACTGATTCATACCGTTACTTCTAC GAAATTTCTACTAGTTTAACTTTGAACTACTTGGTCACTGATTCATACCGTTACTTCTAC *********	300 300
1 2	AACAACACCGACTCAGTTGAATCAATGGTGCAATTAATCCGTGGTCACTTGCGTGACATT AACAACACCGACTCAGTTGAATCAATGGTGCAATTAATCCGTGGTCACTTGCGTGACATT *********	360 360
1 2	ATTGGTCGTATGGATTTGAACGCAGCCCTTGGCTCAACTAAGGAAATTAACGATCAACTT ATTGGTCGTATGGATTTGAACGCAGCCCTTGGCTCAACTAAGGAAATTAACGATCAACTT *******************************	420 420
1 2	TTCACTGCAACTGGTGACCTGACTGATATCTACG <mark>G</mark> TATCAAGGTCGTTCGTGTCAACGTT TTCACTGCAACTGGTGACCTGACTGATATCTACG <mark>G</mark> TATCAAGGTCGTTCGTGTCAACGTT ***********************************	480 480
1 2	GATGAACTTTTACCAAGTGCTGAAATTCAACATGCCATGGACAAACAA	540 540
1 2	CGTGAAAAGACTGCCGCAATTGCTAAGGCCGAAGGTGAAGCTCGTACCATTGGAATGACC CGTGAAAAGACTGCCGCAATTGCTAAGGCCGAAGGTGAAGCTCGTACCATTGGAATGACC ********	600 600
1 2	ACTAAGGCTAAGAACGATGCTTTGGTTGCTACTGCTAAGGCCAACGCTGAGGCAGTTAAG ACTAAGGCTAAGAACGATGCTTTGGTTGCTACTGCTAAGGCCAACGCTGA <mark>A</mark> GCAGTTAAG ********************************	660 660
1 2	ACGCAAGCTGATGCCGACGCTTACCGTGTACAAAAGATGCAAGAAGCCTTGTCAAAGGCT ACGCAAGCTGATGCCGACGCTTACCGTGTACAAAAGATGCAAGAAGCCTTGTCAAAGGCT ********	720 720
1 2	GGCGAAGGTTACTTCAGAAACCAAAGTTTGGACAGCTTTAACCAATTGGCTCAAGGCCCT GGCGAAGGTTACTTCAGAAACCAAAGTTTGGACAGCTTTAACCAATTGGCTCAAGGCCCT ********************	780 780
1 2	AACAACTTGATCGTGGTTGGCAAGGATGAAATGACCGACTTGGGTAAGGTTCCTGCTTTG AACAACTTGATCGTGGTTGGCAAGGATGAAATGACCGACTTGGGTAAGGTTCCT <mark>A</mark> CTTTG **********************************	840 840
1 2	AGAAAGGTGTGGGATGCCAGCGACGATAAGAAAGATAAATAA	

Предполагаемые ТА системы в штаммах L. helveticus DCP4571, H10 и R0052

N⁰	ТА система	Величина белка	Характеристика белка
п/п			
1.	Lhv_0083	140aa	Profag repressor
	Lhv_0084	117aa	putative transcriptional regulator
2.	Lhv_0439	85aa	hypothetical protein
	Lhv_0440	142aa	putative DNA recombination protein
3.	Lhv_0440	142aa	putative DNA recombination protein
	Lhv_0441	103aa	YrzB family protein
4.	Lhv_0454	141 aa	Methyl-accepting chemotaxis-like protein
	Lhv_0455	123aa	hypothetical protein
5.	Lhv_0782	95aa	hypothetical protein
	Lhv_0783	166aa	hypothetical protein
6.	Lhv_2403	97aa	hypothetical protein
	Lhv_0815	75aa	hypothetical protein
7.	Lhv_0860	145aa	Cell division protein sepF
	Lhv_2407	100aa	cell division membrane protein
8.	Lhv_0915	-	-
	Lhv_0917	171aa	hypothetical protein
9.	Lhv_1127	92aa	PHD family toxin-antitoxin system
	Lhv_2502	115aa	RelE family toxin-antitoxin system
10.	Lhv_1657	122aa	Xre family toxin-antitoxin system
	Lhv_1658	88aa	hypothetical protein
11.	Lhv_2095	125aa	Cupredoxin-like domain protein
	Lhv_2096	95aa	Cupredoxin-like domain protein

Предполагаемые TA системы в штамме L. helveticus DCP4571

N⁰	ТА система	Величина белка	Характеристика белка
п/п			
1.	LBHH_0481	172aa	MutT/NUDIX family protein
	LBHH_0482	89aa	hypothetical protein
2.	LBHH_0655	57aa	hypothetical protein
	LBHH_0656	47aa	plasmid replication initiation protein
3.	LBHH_0842	53aa	histidine kinase
	LBHH_0843	201aa	ArsR family transcriptional regulator
4.	LBHH_0952	135aa	MerR family transcriptional regulator
	LBHH_0953	60aa	hypothetical protein
5.	LBHH_1065	95aa	PHD family toxin-antitoxin system
	LBHH_1066	116aa	RelE family toxin-antitoxin system
6.	I PUU 1210	15300	Toxin-antitoxin system, antitoxin
	LDIIII_1219	155aa	component, HicB family
	LBHH_1220	255aa	Choloylglycine hydrolase
7.	LBHH_1715	61aa	Integral membrane protein
	LBHH_1716	186aa	hypothetical protein
8.	LBHH_1826	46aa	Toxin-antitoxin system
	LBHH_1827	102aa	hypothetical protein
9.	LBHH_1976	85aa	putative membrane protein
	LBHH_1977	129aa	phospholipase D
10.	LBHH_1992	102aa	PHD family toxin-antitoxin system
	LBHH_2056	89aa	RelE family toxin-antitoxin system

Предполагаемые TA системы в штамме L. helveticus H10

Предполагаемые TA системы в штамме L. helveticus R005	52
---	----

№п/п	ТА система	Величина	Характеристика белка
		белка	
1.	R0052_00225	117aa	membrane protein
	R0052_00230	66aa	DNA-binding protein
2.	D0052 02205	47	membrane carboxypeptidase, arginine
	R0052_02305	4/aa	repressor
	R0052_02310	28aa	antitoxin HicB
3.	R0052_02310	28aa	antitoxin HicB
	D0052 02215	5(antitoxin HicB (39%), glycerophosphoryl
	R0052_02315	56aa	diester phosphodiesterase (52%)
4.	R0052_02570	141aa	Methyl-accepting chemotaxis-like protein
	R0052_02575	123aa	hypothetical protein
5.	R0052_02870	142aa	hypothetical protein
	R0052_02875	87aa	hypothetical protein
6.	R0052_03020	60aa	addiction module toxin RelE
	R0052_03025	87aa	AbrB family transcriptional regulator
7.	R0052_03080	42aa	glycolate oxidase
	R0052_03085	37aa	6-phospho-beta-glucosidase
8.	R0052_03140	111aa	Xre family toxin-antitoxin system
	R0052_03145	63aa	hypothetical protein
9.	R0052_03820	158aa	DNA-directed RNA polymerase beta subunit
	R0052_03825	92aa	acetyl-CoA carboxylase
10.	R0052_04205	97aa	hypothetical protein
	R0052_04210	98aa	hypothetical protein
11.	R0052_04940	53aa	histidine kinase
	R0052_04945	203aa	ArsR family transcriptional regulator
12.	D0052 05465	2400	Sir2 silent information regulator family NAD-
	K0032_03403	3488	dependent deacetylase
	P0052 05470	21600	Sir2 silent information regulator family NAD-
	K0032_03470	210aa	dependent deacetylase
13.	R0052_05680	150aa	hypothetical protein
	R0052_05685	58aa	HTH-type transcriptional regulator
14.	R0052_05850	67aa	Amidase
	R0052_05855	174aa	cell separation protein
15.	R0052_06465	45aa	cell division protein Fic
	R0052_06470	71aa	hypothetical protein
16.	R0052_06585	125aa	camphor resistance protein CrcB
	R0052_06590	127aa	chromosome condensation protein CrcB
17.	R0052_07345	171aa	hypothetical protein
	R0052_07350	89aa	polyferredoxin
18.	R0052_07620	146aa	Cell division protein sepF
	R0052_07625	100aa	cell division membrane protein

19.	R0052_07860	93aa	hypothetical protein
	R0052_07865	75aa	hypothetical protein
20.	R0052_08030	89aa	hypothetical protein
	R0052_08035	195aa	hypothetical protein
21.	R0052_08035	195aa	hypothetical protein
	R0052_08040	143aa	Prepilin-type cleavage/methylation protein
22.	R0052_08615	90aa	hypothetical protein
	R0052_08620	90aa	hypothetical protein
23.	R0052_09820	110aa	HicB protein
	R0052_09825	83aa	hexulose-6-phosphate isomerase
24.	D0052 10005	175.00	glycosyltransferase in exopolysaccharide
	K0032_10093	1/3aa	biosynthesis
	D0052 10100	7100	CDP-glycerol:poly(glycerophosphate)
	K0032_10100	/1aa	glycerophosphotransferase
25.	R0052_10550	63aa	hypothetical protein
	R0052_10555	62aa	hypothetical protein
26.	R0052_10560	73aa	hypothetical protein
	R0052_10565	75aa	XRE family transcriptional regulator
27.	R0052_10895	45aa	acetoin(diacetyl)reductase
	R0052_10900	212aa	acetoin(diacetyl)reductase
28.	R0052_11130	40aa	hypothetical protein
	R0052_11135	120aa	hypothetical protein
29.	R0052_11135	120aa	hypothetical protein
	R0052_11140	79aa	transposase
30.	R0052_11615	129aa	phospholipase D
	R0052_11620	68aa	immunity protein PlnI
31.	R0052_11690	102aa	PHD family toxin-antitoxin system
	R0052_11695	89aa	RelE family toxin-antitoxin system
32.	R0052_11890	125aa	Cupredoxin-like domain protein
	R0052_11895	95aa	Cupredoxin-like domain protein

Приложение Д

Выравнивание нуклеотидной последовательности генов группы relB_1

Ген RelB_1

L.casei_BD_II L.casei_LC2W L.casei_BL23 L.casei_W56	ATGGCAGCCACAAAGAAAGAAACTCGCTTGAATATTCGTGTTGATCCGGAATTAAAAAGT ATGGCAGCCACAAAGAAAGAAACTCGCTTGAATATTCGTGTTGATCCGGAATTAAAAAGT ATGGCAGCCACAAAGAAAGAAACTCGCTTGAATATTCGTGTTGATCCGGAATTAAAAAGT ATGGCAGCCACAAAGAAAGAAACTCGCTTGAATATTCGTGTTGATCCGGAATTAAAAAGT **************************	60 60 60 60
L.casei_BD_II L.casei_LC2W L.casei_BL23 L.casei_W56	GCTGCTCAAATCGTAGCAAATGATATGGGCATCGACTTGACCGCAGCTGTTACTATGTTC GCTGCTCAAATCGTAGCAAATGATATGGGCATCGACTTGACCGCAGCTGTTACTATGTTC GCTGCTCAAATCGTAGCAAATGATATGGGCATCGACTTGACCGCAGCTGTTACTATGTTC GCTGCTCAAATCGTAGCAAATGATATGGGCATCGACTTGACCGCAGCTGTTACTATGTTC **********************************	120 120 120 120
L.casei_BD_II L.casei_LC2W L.casei_BL23 L.casei_W56	ATGACGAAAATGGTGAAAGATCACGCCCTCCCGTTTACCCCAACAAGTCTACCAGTTGAA ATGACGAAAATGGTGAAAGATCACGCCCTCCCGTTTACCCCAACAAGTCTACCAGTTGAA ATGACGAAAATGGTGAAAGATCACGCCCTCCCGTTTACCCCAACAAGTCTACCAGTTGAA ATGACGAAAATGGTGAAAGATCACGCCCTCCCGTTTACCCCAACAAGTCTACCAGTTGAA	180 180 180 180
L.casei_BD_II L.casei_LC2W L.casei_BL23 L.casei_W56	ACCTTACAGGCGCTGAAAGAAGCAAAGCACCCAGAGCTGCTCAAAAAATACAGCACGCCT ACCTTACAGGCGCTGAAAGAAGCAAAGCA	240 240 240 240
L.casei_BD_II L.casei_LC2W L.casei_BL23 L.casei_W56	GATGACATGTGGAGAGACTTGAATGTATAG 270 GATGACATGTGGAGAGACTTGAATGTATAG 270 GATGACATGTGGAGAGACTTGAATGTATAG 270 GATGACATGTGGAGAGACTTGAATGTATAG 270	

Выравнивание нуклеотидной последовательности генов группы relB_2

L.acidophilus NCFM ATGGCAGAAAAAACAACGGGACTTTATGTCAGAATGAATCCAGAAAAGAA 50 L.acidophilus_La_14 L.acidophilus_La_14ATGGCAGAAAAAACAACGGGACTTTATGTCAGAATGAATCCAGAAAAGAA 50L.helveticus_DPC_4571ATGGCAGAAAAAACAACAGGACTTTATGTCAGAATGAATCCAGAAAAGAA 50L.amylovorus_GRL_1112ATGGCAGAAAAAACAACAGGACTTTATGTCAGAATGAATCCAGAAAAGAA 50L.helveticus_R0052ATGGCAGAAAAAACAACAGGACTTTATGTCAGAATGAATCCAGAAAAGAA 50 ATGGCAGAAAAAACAACGGGACTTTATGTCAGAATGAATCCAGAAAAGAA 50 L.helveticus H10 ATGGCAGAAAAAACAACAGGACTTTATGTCAGAATGAATCCAGAAAAGAA 50 ATGGCAGAAAAAACAACAGGACTTTATGTCAGAATGAATCCAGAAAAGAA 50 L.helveticus_CNRZ32 L.acidophilus 30SC ATGGCAGAAAAAACAACAGGACTTTATGTCAGAATGAATCCAGAAAAGAA 50 L.crispatus ST1 ATGGCTGAGAAAACAACTGGACTTTATGTCAGAATGAATCCTGAAAAGAA 50 L.acidophilus NCFM GGAAAAGGCGGAAGCTATTTTGAAAAAGCTGGGTTTGAATTCGGCTACGG 100 GGAAAAGGCGGAAGCTATTTTGAAAAAGCTGGGTTTGAATTCGGCTACGG 100 L.acidophilus La 14 L.acidophilus_La_14 GGAAAAGGCGGAAGCTATTTTGAAAAAGCTGGGTTTGAATTCGGCTACGG 100 L.helveticus_DPC_4571 GGAAAAGGCAGAAGCTATTCTGAAAAAGCTGGGGTTAAATTCAGCTACGG 100 L.amylovorus_GRL_1112 GGAAAAGGCAGAAGCTATTCTGAAAAAGCTGGGGTTAAATTCAGCTACGG 100 L.helveticus_R0052 GGAAAGGCAGAAGCTATTCTGAAAAAGCTGGGGTTAAATTCAGCTACGG 100 L.helveticus H10 GGAAAAGGCAGAAGCTATTCTGAAAAAGCTGGGGTTAAATTCAGCTACGG 100

 GGAAAAGGCAGAAGCTATTCTGAAAAAGCTGGGGTTAAATTCAGCTACGG 100

 S2
 GGAAAAGGCAGAAGCTATTCTGAAAAAGCTGGGGTTAAATTCAGCTACGG 100

 S2
 GGAAAAGGCAGAAGCTATTCTGAAAAAGCTGGGGTTAAATTCAGCTACGG 100

 S3
 GGAAAAGGCAGAAGCTATTCTGAAAAAGCTGGGGTTAAATTCAGCTACGG 100

 AGAAAAGGCAGAAGCTATTCTGAAAAAGCTGGGGTTAAATTCAGCTACGG 100
 100

 AGAAAAGGCAGAAGCAATTTTGAAGCAATTAGGCTTGAATTCTGCGACTG 100
 AGAAAAGCAGAAGCAATTTTAAAGCAATTAGGCTTGAATTCAGCTACTG 100

L.helveticus CNRZ32 L.acidophilus 30SC L.amylovorus GRL1118 L.kefiranofaciens ZW3 L.crispatus ST1 L.acidophilus NCFM CAATTAACATGTTTTATGATCAAATTATTTTGCATAATGGTATTCCTTTT 150 L.acidophilus_NCFM CAATTAACATGTTTTATGATCAAATTATTTTGCATAATGGTATTCCTTTT 150 L.acidophilus_La_14 CAATTAACATGTTTTATGATCAAATTATTTTGCATAATGGTATTCCTTTT 150 L.helveticus_DPC_4571 CAATTAACATGTTCTATGATCAGATTATTCTTCATAATGGTATTCCTTTC 150 L.amylovorus_GRL_1112 CAATTAACATGTTCTATGATCAGATTATTCTTCATAATGGTATTCCTTTC 150 L.helveticus_R0052 CAATTAACATGTTCTATGATCAGATTATTCTTCATAATGGTATTCCTTTC 150 L.belveticus_H10 CAATTAACATGTTCTATGATCAGATTATTCTTCATAATGGTATTCCTTTC 150 L.helveticus H10 CAATTAACATGTTCTATGATCAGATTATTCTTCATAATGGTATTCCTTTC 150 L.helveticus_HI0CAATTAACATGTTCTATGATCAGATTATTCTTCATAATGGTATTCCTTTCL.helveticus_CNRZ32CAATTAACATGTTCTATGATCAGATTATTCTTCATAATGGTATTCCTTTCL.acidophilus_30SCCAATTAACATGTTCTATGATCAGATTATTCTTCATAATGGTATTCCTTTCL.amylovorus_GRL1118CAATTAACATGTTCTATGATCAGATTATTCTTCATAATGGTATTCCTTTCL.kefiranofaciens_ZW3CGATTAACATGTTTTATGATCAAATTATTTTTACATAATGGTATTCCTTTTL.crispatus_ST1CAATTAATATGTTTTATGATCAAATTATTTTACGTAATGGTATTCCTTTT L.acidophilus_NCFMAGAGTTGAGATTCCAAATGCATGGGATAATTTGGATCAAATGAATAAGTA 200L.acidophilus_La_14AGAGTTGAGATTCCAAATGCATGGGATAATTTGGATCAAATGAATAAGTA 200L.helveticus_DPC_4571AGAGTAGAGATTCCAAATGCATGGGATAATTTGGATCAAATGAATAAGTA 200L.amylovorus_GRL_1112AGAGTAGAGATTCCAAATGCATGGGATAATTTGGATCAAATGAATAAGTA 200L.helveticus_R0052AGAGTAGAGATTCCAAATGCATGGGATAATTTGGATCAAATGAATAAGTA 200 L.helveticus_H10 AGAGTAGAGATTCCAAATGCATGGGATAATTTGGATCAAATGAATAAGTA 200 L.helveticus CNRZ32 AGAGTAGAGATTCCAAATGCATGGGATAATTTGGATCAAATGAATAAGTA 200 L.acidophilus 30SC L.amylovorus GRL1118 L.kefiranofaciens ZW3 AGAGTTGAGATTCCTAATGCTTGGGCCAACTTGGACTACATGAACAAGTA 200 L.crispatus ST1 L.acidophilus_NCFM TGAATACACCAGGTTGCTTGACGAACGTCTTAATACGCTTAGTGGAAGG- 249 L.acidophilus_La_14 TGAATACACCAGGTTGCTTGACGAACGTCTTAATACGCTTAGTGGAAGG- 249 L.helveticus_DPC_4571 TGAATACGCCAAACTGCTTGACGAGGGCCTGAACACATTGAACGGAAGG- 249 L.amylovorus_GRL_112 TGAATACGCCAAACTGCTTGACGAGGCCCTGAACACATTGAACGGAAGG- 249 L.helveticus_R0052 TGAATACGCCAAACTGCTTGACGAGCGCCTGAACACATTGAACGGAACGC- 240 L.helveticus_H10 TGAATACGCCAAACTGCTTGACGAGCGCCTGAACACATTGAACGGAAGG- 249 L.helveticus H10 L.helveticus CNRZ32 TGAATACGCCAAACTGCTTGACGAGCGCCTGAACACATTGAACGGAAGG- 249 TGAATACGCCAAACTGCTTGACGAGCGCCTGAACACATTGACCGGAAGG- 249 TGAATATGCCAAACTGCTTGACGAGCGCCTGAACACATTGACCGGAAGG- 249 TGAATATGCTAAGCTCCTGGATGAACGGCTTAATACGCTCACCGGAAGG- 249 TGAGTATGCTCATCTACTTGATGAAAAGCTTAAC-CGCTTGGCAGAGCAG 249 L.acidophilus 30SC L.amylovorus GRL1118 L.kefiranofaciens_ZW3 L.crispatus ST1 L.acidophilus_NCFM ---GAAGATTTGTTAGGAG-AAATTGCCAAGCAACTTGATGATGACAA-- 293 L.acidophilus_La_14 ---GAAGATTTGTTAGGAG-AAATTGCCAAGCAACTTGATGATGACAAC L.helveticus_DPC_4571 ---GAAGATTTACTTCCCCAAGCAACTTGATGATGATGACAAC ***.** .* .. * ** ** ** ** ** *. * . . ***..

L.amylovorus_GRL_1112 ----GAAGATTTACTTGGAG-ATATCGCCAAGAGGCTTGATGCGGAAAAGA 295 L.helveticus_H10 ----GAAGATTTACTTGGAG-ATATCGCCAAGAGGCTTGATGCGGAAAAGA 295 L.helveticus_CNRZ32 ----GAAGATTTACTTGGAG-ATATCGCCAAGAGGCTTGATGCGGAAAAGA 295 L.acidophilus_30SC ----GAAGATTTACTTGGAG-ATATCGCCAAGAGGCTTGATGCGGAAAAGA 295 L.amylovorus_GRL1118 ----GAAGATTTACTTGGAG-ATATCGCCAAGAGGCTTGATGCGGAAAAGA 295 L.kefiranofaciens_ZW3 ----GAAGATTTACTTGGAG-ATATCGCCAAGAGGCTTGATGCGGAAAAGA 295 L.kefiranofaciens_ZW3 ----GAAGATTTACTTGGAG-ATATCGCCAAGAGGCTTGATGCGGAAAAGA 295 L.crispatus_ST1 ACCGATAGTTACTTGGGGGATGTCGCTAG------ 276 ACCGATAGTTCACTAGGTG-AATTAGCCAAGGGAGTCGATCCCAAG----- 294 **:..* . * *** *: * ***. L.acidophilus_La_14 ----AAAGAAAGATGAATAA 309 L.acidophilus_La_14 ----AAAGAAAGATGAATAA 309 L.acidophilus_La_14 ATGAAAGAAAGACAACTAA 315 L.helveticus_DPC_4571 ATGAAAAGAAAGACAACTAA 315 L.helveticus_R0052 ATGAAAAGAAAGACAACTAA 315 L.helveticus_R0052 ATGAAAGAAAGACAACTAA 315 L.helveticus_H10 ATGAAAAGAAAGACAACTAA 315 L.helveticus_GNRZ32 ATGAAAGAAAGACAACTAA 315 L.acidophilus_30SC ATGAAAGAAAGACAACTAA 315 L.acidophilus_30SC ATGAAAGAAAGACAACTAA 315 L.acidophilus_30SC ATGAAAGAAAGACAACTAA 315 L.acidophilus_30SC ATGAAAGAAAGACAACTAA 315 L.amylovorus_GRL118 ATGAAAGAAAGACAACTAA 315 L.amylovorus_GRL118 ATGAAAGAAAGACAACTAA 315 L.acidophilus_30SC ATGAAAGAAAGACAACTAA 315 L.kefiranofaciens_ZW3 ----------AAGAAGAAAGACAACTAA 309

Выравнивание нуклеотидной последовательности генов группы relB3

L.kefiranofaciens_ZW3_RelB_3_3	ATGGCAGTTAAGGAAAAGAAACGGGTCCAAGTCAAGATTGATAAAGATTT	50
L.plantarum_WCFSI_RelB_3_6 L.casei_ATCC_334_RelB_3_3 L.plantarum_16RelB_3_8 L.helveticus_H10_RelB_3_5 L.brevis_KB290_RelB_3_9 L.plantarum_P8_RelB_3_10 L.plantarum_ST_III_RelB_3_7	ATGGCAGTTAAGGAAAAGAAACGGGTCCAAGTCAAGATTGATAAAGATTT ATGGCAGTTAAGGAAAAGAAACGGGTCCAAGTCAAGATTGATAAAGATTT ATGGCAGTTAAGGAAAAGAAACGGGTCCAAGTCAAGATTGATAAAGATTT ATGGCAGGTAAGGAAAAGAAACGGGTCCAAGTCAAGATTGATAAAGATTT ATGGCAGTTAAGGAAAAGAAACGGGTCCAAGTCAAGATTGATAAAGATTT ATGGCAGTTAAGGAAAAGAAACGGGTCCAAGTCAAGATTGATAAAGATTT	50 50 50 50 50 50
L.plantarum_16_RelB_3_1 L.buchneri_RelB_3_4 L.buchneri_NRRL_RelB_3_4 L.casei_Zhang_RelB_3_2	ATGGCAGTTAAGGAAAAGAAACGCGTACAAGTCCAGATTGACAAAGAATT ATGGCAGTTAAGGAAAAGAAACGCGTACAAGTCCAGATTGACAAAGAATT ATGGCAGTTAAGGAAAAGAAACGCGTACAAGTCCAGATTGACAAAGAATT ATGGCAGTTAAGGAAAAGAAACGGGTACAAGTCAAAATTGATAAAGACTT	50 50 50 50
L.kefiranofaciens_ZW3_RelB_3_3 L.plantarum_WCFS1_RelB_3_6	GGCCGATGATACCGAAGCAGTTTTAAGCGAATTGGGCTTAAATCCAACCA -GCCGATGATACCGAAGCAGTTTTAAGCGAATTGGGCTTAAATCCAACCA	100 49
L.case1_ATCC_334_RelE_3_3 L.plantarum_16RelB_3_8 L.helveticus_H10_RelB_3_5 L.brevis_KB290_RelB_3_9 L.plantarum_P8_RelB_3_10 L.plantarum_ST_III_RelB_3_7 L.plantarum_16_RelB_3_1 L.buckneri_RelB_3_4	GGCCGATGATACCGAAGCAGTTTTAAGCGAATTGGGCTTAAATCCAACCA GGCCGATGATACCGAAGCAGTTTTAAGCGAATTGGGCTTAAATCCAACCA GGCCGATGATACCGAAGCAATTTTAAGCGAATTGGGCTTAAATCCAACCA GGCCGATGATACCGAAGCAGTTTTAAGCGAATTGGGCTTAAATCCAACCA GGCCGATGATACCGAAGCCGTTTTAAGCGAATTGGGCTTAAATCCAACCA GGCCGATAATACCGAAGCCGTTTTAAGCCAGTTAGGTCTAAACCCAACTA GGCCAGATAATACCGAAGCCGTTTTAAGCCAGTTAGGTCTAAACCCAACTA	100 100 100 100 100 100 100
L.buchneri_NRRL_RelB_3_4 L.casei_Zhang_RelB_3_2	GGCAGATAATACCGAAGCCGTTTTAAGCCAGTTAGGTCTAAACCCAACTA AGCTGATAATACAGAAGCAGTTTTAAACGAGTTGGGTCTAAATCCAACCA ** ***.****.************************	100 100 100
L.kefiranofaciens_ZW3_RelB_3_3	CGGCCATTAACATGTTTTACAAGCGGATTGTTGCTAATGGTGCTTTACCT	150 99
L.casei_ATCC_334_RelB_3_3 L.plantarum_16RelB_3_8	CGGCCATTAACATGTTTTACAAGCGGATTGTTGCTAATGGTGCTTTACCT CGGCCATTAACATGTTTTACAAGCGGATTGTTGCTAATGGTGCTTTACCT	150 150
L.helveticus_H10_RelB_3_5 L.brevis_KB290_RelB_3_9 L.plantarum_P8_RelB_3_10	CGGCCATTAACATGTTTTACAAGCGGATTGTTGCTAATGGTGCTTTACCT CGGCCATTAACATGTTTTACAAGCGGATTGTTGCTAATGGTGCTTTACCT CGGCCATTAACATGTTTTACAAGCGGATTGTTGCTAATGGTGCTTTACCT	150 150 150
L.plantarum_ST_III_RelB_3_7 L.plantarum_16_RelB_3_1	CGGCCATTAACATGTTTTACAAGCGGATTGTTGCTAATGGTGCTTTACCT CCGCGATCAATATGTTTTATAAGCGGATTGTTGCTAATGGTGCCTTACCT	150 150
L.buchneri_RelB_3_4 L.buchneri_NRRL_RelB_3_4 L.casei_Zhang_RelB_3_2	CCGCGATCAATATGTTTTATAAGCGGATCGTAGCTGACGCAGCATTACCG CCGCGATCAATATGTTTTATAAGCGGATCGTAGCTGACGCAGCATTACCG CAGCGATTAACATGTTTTATAAGCGAATCGTAGCGGAAGCAGCGTTACCG * ** ** ** ** ******* **************	150 150 150
L.kefiranofaciens_ZW3_RelB_3_3 L.plantarum WCFS1 RelB 3 6	TTTAATGCGTCTTTAAGCGAAGAAGAAGAGCTAATTTACGCTTTTTAAA TTTAATGCGTCTTTAACCGAAGAAGAAGAAGAGCTAATTTACGCTTTTTAAA	200 149
L.casei_ATCC_334_RelB_3_3 L.plantarum_16RelB_3_8 L.helveticus_H10_RelB_3_5 L.brevis_KB290_RelB_3_9 L.plantarum_P8_RelB_3_10 L.plantarum_ST_III_RelB_3_7	TTTAATGCGTCTTTTAAGCGAAGAAGAAGAAGAGCTAATTTACGCTTTTTTAAA TTTAATGCGTCTTTTAAGCGAAGAAGAAGAAGAGCTAATTTACGCTTTTTTAAA TTTAATGCGTCTTTAAGCGAAGAAGAAGAAGAGCTAATTTACGCTTTTTTAAA TTTAATGCGTCTTTAAGCGAAGAAGAAAAAGCTAATTTACGCTTTTTTAAA TTTAATGCGTCTTTAAGCGAAGAAGAAAAAGCTAATTTACGCTTTTTTAAA	200 200 200 200 200 200 200
L.buchneri_RelB_3_4 L.buchneri_NRRL_RelB_3_4 L.casei_Zhang_RelB_3_2	TTTAAACCAGCCCTGAGCGAAGCCGAAAGAGCTAATTTAAGCCTTTTTAAA TTTAAACCAGCCCTGAGCGAAGCCGAAAGAGCTAATTTAAGCCTTTTTAAA TTTAAACCAGCCCTGAGCGAAGCGGAAAGAGCTAATTTAGGTCTTTTAAA *****: . * *.* *****. ****.********** * ******	200 200 200
L.kefiranofaciens_ZW3_RelB_3_3 L.plantarum_WCFS1_RelB_3_6 L.casei_ATCC_334_RelB_3_3 L.plantarum_16RelB_3_8 L.helveticus_H10_RelB_3_5 L.brevis_KB290_RelB_3_9 L.plantarum_P8_RelB_3_10 L.plantarum_ST_III_RelB_3_7 L.plantarum_16_RelB_3_1 L.buchneri_RelB_3_4	GGCGACCGAAGGGACACCAGTCACCGAGTTCAAAGACGCTAAAGAGGTCG GGCGACCGAAGGGACACCAGTCACCGAGTTCAAAGACGCTAAAGAGGTCG GGCGACCGAAGGGACACCAGTCACCGAGTTCAAAGACGCTAAAGAGGTCA GGCGACCGAAGGGACACCAGTCACCGAGTTCAAAGACGCTAAAGAGGTCG GGCGACCGAAGGGACACCAGTCACCGAGTTCAAAGACGCTAAAGAGGTCG GGCGACCGAAGGGACACCAGTCACCGAGTTCAAAGACGCTAAAGAGGTCG GGCGACCGAAGGGACACCAGTCACCGAGTTCAAAGACGCTAAAGAGGTCG GGCGACCGAAGGGACACCAGTAACAGAGTTCAAAGACGCTAAAGAAGTCG GGCTACCAAAGAGACACCAGTAACAGAGTTCAAAGACGCTAAAGAAGTCG GGCTACCAAAGAGACACCAGTAACAGAGTTCAAAGACGCTAAAGAAGTCG	250 199 250 250 250 250 250 250 250 250
T'DACUUELT NKKT KETR 3 4	ggutaucaaagagacaucagtaacagagttcaaagacgctaaagaAgTCG	250

L.casei_Zhang_RelB_3_2

L.kefiranofaciens_ZW3_RelB_3_3 L.plantarum_WCFS1_RelB_3_6 L.casei_ATCC_334_RelB_3_3 L.plantarum_16RelB_3_8 L.helveticus_H10_RelB_3_5 L.brevis_KB290_RelB_3_9 L.plantarum_P8_RelB_3_10 L.plantarum_ST_III_RelB_3_7 L.plantarum_16_RelB_3_1 L.buchneri_RelB_3_4 L.buchneri_NRRL_RelB_3_4 L.casei_Zhang_RelB_3_2

CTGATTGGCTCAACGATCCAGATGAGGACTAA 282 CTGATTGGCTCAACGATCCAGATGAGGACTAA 231 CTGATTGGCTCAACGATCCAGATGAGGACTAA 282 CTGATTGGCTCAACGATCCAGATGAGGACTAA 282 CTGATTGGCTCAACGATCCAGATGAGGACTAA 282 CTGATTGGCTCAACGATCCAGATGAGGACTAA 282 CTGATTGGCTCAACGATCCAGATGAGGACTAA 282 CTGATTGGCTCAATGATCCAGATGAGGACTAA 282 CTGATTGGCTCAATGATCCAGATGAGGACTAA 282 CTGATTGGCTCAATGATCCAGATGAGGACTAA 282 CTGATTGGCTCAATGATCCAGATGAGGACTAA 282 CTGATTGGCTCAATGATCCAGATGAGGACTAA 282 CTGATTGGCTCAATGATCCAGATGAGGACTAA 282 CTGATTGGCTCAATGATCCAGATGAGGACTAA 282 CTGATTGGCTCAATGATCCAGATGAGGACTAA 282 CTGATTGGCTCAATGATCCAGATGAGGACTAA 282		
CTGATTGGCTCAACGATCCAGATGAGGACTAA 231 CTGATTGGCTCAACGATCCAGATGAGGACTAA 282 CTGATTGGCTCAACGATCCAGATGAGGACTAA 282 CTGATTGGCTCAACGATCCAGATGAGGACTAA 282 CTGATTGGCTCAACGATCCAGATGAGGACTAA 282 CTGATTGGCTCAACGATCCAGATGAGGACTAA 282 CTGATTGGCTCAATGATCCAGATGAGGACTAA 282 CTGATTGGCTCAATGATCCAGATGAGGACTAA 282 CTGATTGGCTCAATGATCCAGATGAGGACTAA 282 CTGATTGGCTCAATGATCCAGATGAGGACTAA 282 CTGATTGGCTCAATGATCCAGATGAGGACTAA 282 CTGATTGGCTCAATGATCCAGATGAGGACTAA 282 CTGATTGGCTCAATGATCCAGATGAGGACTAA 282 CTGATTGGCTCAATGATCCAGATGAGGACTAA 282	CTGATTGGCTCAACGATCCAGATGAGGACTAA	282
CTGATTGGCTCAACGATCCAGATGAGGACTAA 282 CTGATTGGCTCAACGATCCAGATGAGGACTAA 282 CTGATTGGCTCAACGATCCAGATGAGGACTAA 282 CTGATTGGCTCAACGATCCAGATGAGGACTAA 282 CTGATTGGCTCAACGATCCAGATGAGGACTAA 282 CTGATTGGCTCAATGATCCAGATGAGGACTAA 282 CTGATTGGCTCAATGATCCAGATGAGGACTAA 282 CTGATTGGCTCAATGATCCAGATGAGGACTAA 282 CTGATTGGCTCAATGATCCAGATGAGGACTAA 282 CTGATTGGCTCAATGATCCAGATGAGGACTAA 282 CTGATTGGCTCAATGATCCAGATGAGGACTAA 282 CTGATTGGCTCAATGATCCAGATGAGGACTAA 282	CTGATTGGCTCAACGATCCAGATGAGGACTAA	231
CTGATTGGCTCAACGATCCAGATGAGGACTAA 282 CTGATTGGCTCAACGATCCAGATGAGGACTAA 282 CTGATTGGCTCAACGATCCAGATGAGGACTAA 282 CTGATTGGCTCAACGATCCAGATGAGGACTAA 282 CTGATTGGCTCAATGATCCAGATGAGGACTAA 282 CTGATTGGCTCAATGATCCAGATGAGGACTAA 282 CTGATTGGCTCAATGATCCAGATGAGGACTAA 282 CTGATTGGCTCAATGATCCAGATGAGGACTAA 282 CTGATTGGCTCAATGATCCAGATGAGGACTAA 282 CGGATTGGCTCAATGATCCAGATGAGGACTAA 282	CTGATTGGCTCAACGATCCAGATGAGGACTAA	282
CTGATTGGCTCAACGATCCAGATGAGGACTAA 282 CTGATTGGCTCAACGATCCAGATGAGGACTAA 282 CTGATTGGCTCAACGATCCAGATGAGGACTAA 282 CTGATTGGCTCAATGATCCAGATGAGGACTAA 282 CTGATTGGCTCAATGATCCAGATGAGGACTAA 282 CTGATTGGCTCAATGATCCAGATGAGGACTAA 282 CTGATTGGCTCAATGATCCAGATGAGGACTAA 282 GCGATTGGCTCAATGATCCAGATGAGGACTAA 282	CTGATTGGCTCAACGATCCAGATGAGGACTAA	282
CTGATTGGCTCAACGATCCAGATGAGGACTAA 282 CTGATTGGCTCAACGATCCAGATGAGGACTAA 282 CTGATTGGCTCAATGATCCAGATGAGGACTAA 282 CTGATTGGCTCAATGATCCAGATGAGGACTAA 282 CTGATTGGCTCAATGATCCAGATGAGGACTAA 282 CTGATTGGCTCAATGATCCAGATGAGGACTAA 282 GCGATTGGCTCAATGATCCAGATGAGGACTAA 282	CTGATTGGCTCAACGATCCAGATGAGGACTAA	282
CTGATTGGCTCAACGATCCAGATGAGGACTAA 282 CTGATTGGCTCAATGATCCAGATGAGGACTAA 282 CTGATTGGCTCAATGATCCAGATGAGGACTAA 282 CTGATTGGCTCAATGATCCAGATGAGGACTAA 282 CTGATTGGCTCAATGATCCAGATGAGGACTAA 282 GCGATTGGCTCAATGATCCAGATGAGGACTGA 282 *********	CTGATTGGCTCAACGATCCAGATGAGGACTAA	282
CTGATTGGCTCAATGATCCAGATGAGGACTAA 282 CTGATTGGCTCAATGATCCAGATGAGGACTAA 282 CTGATTGGCTCAATGATCCAGATGAGGACTAA 282 CTGATTGGCTCAATGATCCAGATGAGGACTAA 282 GCGATTGGCTCAATGATCCAGATGAGGACTGA 282 **********	CTGATTGGCTCAACGATCCAGATGAGGACTAA	282
CTGATTGGCTCAATGATCCAGATGAGGACTAA 282 CTGATTGGCTCAATGATCCAGATGAGGACTAA 282 CTGATTGGCTCAATGATCCAGATGAGGACTAA 282 GCGATTGGCTCAATGATCCAGATGAGGACTGA 282 **********	CTGATTGGCTCAATGATCCAGATGAGGACTAA	282
CTGATTGGCTCAATGATCCAGATGAGGACTAA 282 CTGATTGGCTCAATGATCCAGATGAGGACTAA 282 GCGATTGGCTCAATGATCCAGATGAGGACTGA 282 **********	CTGATTGGCTCAATGATCCAGATGAGGACTAA	282
CTGATTGGCTCAATGATCCAGATGAGGACTAA 282 GCGATTGGCTCAATGATCCAGATGAGGACTGA 282 **********	CTGATTGGCTCAATGATCCAGATGAGGACTAA	282
GCGATTGGCTCAATGATCCAGATGAGGACTGA 282	CTGATTGGCTCAATGATCCAGATGAGGACTAA	282
********* *****************************	GCGATTGGCTCAATGATCCAGATGAGGACTGA	282
	********* *****************************	

Выравнивание нуклеотидной последовательности генов группы relB4

L.rhamnosus_LOCK908 L.rhamnosus_Lc_705 L.rhamnosus_ATCC_8530 L.rhamnosus_GG_RelB_4_2	ATGACCAAAAAATCCCGCATCAGCGTTAGGATTGATACCAAAACTAAAG. ATGACCAAAAAATCCCGCATCAGCGTTAGGATTGATACCAAAACTAAAG. ATGACCAAAAAATCCCGCATCAGCGTTAGGATTGATACCAAAACTAAAG. ATGGCAAAAGAATCCCGGTATCCGCAATTGGATTAACACAATAACCAGAA. ***.*.****************************	A 50 A 50 A 50 A 50 A 50
L.rhamnosus_LOCK908 L.rhamnosus_Lc_705 L.rhamnosus_ATCC_8530 L.rhamnosus_GG_RelB_4_2	ACGAGCGCTCCATGTTCTTAATAGCATGGGATTAGATATTTCCTCGGCT. ACGAGCGCTCCATGTTCTTAATAGCATGGGATTAGATATTTCCTCGGCT. ACGAGCGCTCCATGTTCTTAATAGCATGGGATTAGATATTTCCTCGGCT. ACGAGCTCTCCATGTTCTTAATCGTCTGGGACTAGAGAGATTCTCGGCT. ****** ****************	A 100 A 100 A 100 A 100 *
L.rhamnosus_LOCK908 L.rhamnosus_LC_705 L.rhamnosus_ATCC_8530 L.rhamnosus_GG_RelB_4_2	TTAACATGTACCTGAAACGGATTGGTGACACCGGTGCATTGCCATTTAC. TTAACATGTACCTGAAACGGATTGGTGACACCGGTGCATTGCCATTTAC. TTAACATGTACCTGAAACGGATTGGTGACACCGGTGCATTGCCATTTAC. TTAACATGTATTGGAAACGGATTGGTGACACCGGTGCATTGCCATTTAC. *******	A 150 A 150 A 150 A 150 *
L.rhamnosus_LOCK908 L.rhamnosus_LC_705 L.rhamnosus_ATCC_8530 L.rhamnosus_GG_RelB_4_2	CCTCCAATGTCATTTGTTGATCAGCTTCAAGTTGCAGAAGCTGATGTTA CCTCCAATGTCATTTGTTGATCAGCTTCAAGTTGCAGAAGCTGATGTTA CCTCCAATGTCATTTGTTGATCAGCTTCAAGTTGCAGAAGCTGATGTTA CTTGAAATGTCATTCGCCGATCAGCTTCGATTTGCAGAAGCAGATGTTA * * .********* * ********.* **********	A 200 A 200 A 200 A 200 A 200
L.rhamnosus_LOCK908 L.rhamnosus_Lc_705 L.rhamnosus_ATCC_8530 L.rhamnosus_GG_RelB_4_2	AGCGGGGCGAATAAAAAGCTTCAAGACTGTCGATGCTTTGATGAAGGAT AGCGGGGCGAATAAAAAGCTTCAAGACTGTCGATGCTTTGATGAAGGAT AGCGGGGCGAATAAAAAGCTTCAAGACTGTCGATGCTTTGATGAAGGAT AGCGGGGCGAATAAAAAGCTTCAAGACTGTTGGTGCTTTGATGAAGGAT ***********	F 250 F 250 F 250 F 250 F 250
L.rhamnosus_LOCK908 L.rhamnosus_Lc_705 L.rhamnosus_ATCC_8530 L.rhamnosus_GG_RelB_4_2	TATACAGTGATGTTGACGATTAA 273 TATACAGTGATGTTGACGATTAA 273 TATACAGTGATGTTGACGATTAA 273 TATACAGTGATGTTGACGGTTAA 273 *******************	
L.rhamnosus_ATCC_8530 L.rhamnosus_Lc_705 L.rhamnosus_LOCK908	ATGACCAAAAAATCCCGCATCAGCGTTAGGATTGATACCAAAACTAAAGA ATGACCAAAAAATCCCGCATCAGCGTTAGGATTGATACCAAAACTAAAGA ATGACCAAAAAATCCCGCATCAGCGTTAGGATTGATACCAAAACTAAAGA *********************************	50 50 50
L.rhamnosus_ATCC_8530 L.rhamnosus_Lc_705 L.rhamnosus_LOCK908	ACGAGCGCTCCATGTTCTTAATAGCATGGGATTAGATATTTCCTCGGCTA ACGAGCGCTCCATGTTCTTAATAGCATGGGATTAGATATTTCCTCGGCTA ACGAGCGCTCCATGTTCTTAATAGCATGGGATTAGATATTTCCTCGGCTA **********	100 100 100
L.rhamnosus_ATCC_8530 L.rhamnosus_Lc_705 L.rhamnosus_LOCK908	TTAACATGTACCTGAAACGGATTGGTGACACCGGTGCATTGCCATTTACA TTAACATGTACCTGAAACGGATTGGTGACACCGGTGCATTGCCATTTACA TTAACATGTACCTGAAACGGATTGGTGACACCGGTGCATTGCCATTTACA ******************************	150 150 150
L.rhamnosus_ATCC_8530 L.rhamnosus_Lc_705 L.rhamnosus_LOCK908	CCTCCAATGTCATTTGTTGATCAGCTTCAAGTTGCAGAAGCTGATGTTAA CCTCCAATGTCATTTGTTGATCAGCTTCAAGTTGCAGAAGCTGATGTTAA CCTCCAATGTCATTTGTTGATCAGCTTCAAGTTGCAGAAGCTGATGTTAA ******************************	200 200 200
L.rhamnosus_ATCC_8530 L.rhamnosus_Lc_705 L.rhamnosus_LOCK908	AGCGGGGCGAATAAAAAGCTTCAAGACTGTCGATGCTTTGATGAAGGATT AGCGGGGCGAATAAAAAGCTTCAAGACTGTCGATGCTTTGATGAAGGATT AGCGGGGCGAATAAAAAGCTTCAAGACTGTCGATGCTTTGATGAAGGATT *************************	250 250 250
L.rhamnosus_ATCC_8530 L.rhamnosus_Lc_705 L.rhamnosus_LOCK908	TATACAGTGATGTTGACGATTAA 273 TATACAGTGATGTTGACGATTAA 273 TATACAGTGATGTTGACGATTAA 273 ****	

Выравнивание нуклеотидной последовательности генов группы relB5

L.helveticus_R0052_RelB_5_3 L.helveticus_H10_RelB_5_5 L.helveticus_CNRZ32_RelB_5_2 L.helveticus_DPC_4571_RelB_5_1	ATGGATTACAAAGATCAAACTTCGATGCAAAAAACACAACTAAGCATTTC ATGGATTACAAAGATCAAACTTCGATGCAAAAAACACAACTAAGCATTTC ATGGATTACAAAGATCAAACTTCGATGCAAAAAACACAACTAAGCATTTC	50 50 50
L.helveticus_R0052_RelB_5_3 L.helveticus_H10_RelB_5_5 L.helveticus_CNRZ32_RelB_5_2 L.helveticus_DPC_4571_RelB_5_1	ATGCTAG CGTTGATGAAGATTTAGCTAAGGATGTCCAAGAAAAATTAGAAATGCTAG CGTTGATGAAGATTTAGCTAAGGATGTCCAAGAAAAATTAGAAATGCTAG CGTTGATGAAGATTTAGCTAAGGATGTCCAAGAAAAATTAGAAATGCTAG ******	7 100 100 100
L.helveticus_R0052_RelB_5_3 L.helveticus_H10_RelB_5_5 L.helveticus_CNRZ32_RelB_5_2 L.helveticus_DPC_4571_RelB_5_1	GATTAGATCAAAGTGATTTTTTTTTTAATAGGTCTTTTTGACTAATATAGCTAAT GATTAGATCAAAGTGATTTTTTTTTT	57 150 150 150
L.helveticus_R0052_RelB_5_3 L.helveticus_H10_RelB_5_5 L.helveticus_CNRZ32_RelB_5_2 L.helveticus_DPC_4571_RelB_5_1	AATAAAAAATTACCTTTTAGCAAGCTTACTAATGAAGAAGAGGGAAAAAGC AATAAAAAATTACCTTTTAGCAAGCTTACTAATGAAGAAGAGGGAAAAAGC AATAAAAAATTACCTTTTAGCAAGCTTACTAATGAAGAAGAGGGAAAAAGC AATAAAAAATTATCTTTTAGCAAGCTTACTAATGAAGAAGAGGAAAAAGC **********	107 200 200 200
L.helveticus_R0052_RelB_5_3 L.helveticus_H10_RelB_5_5 L.helveticus_CNRZ32_RelB_5_2 L.helveticus_DPC_4571_RelB_5_1	AATATTGGCTGCTAAATTAAGTGCATTAACAACGAGCTGGGGAAATATTC AATATTGGCTGCTAAATTAAGTGCATTAACAACGAGCTGGGGAAATATTC AATATTGGCTGCTAAATTAAGTGCATTAACAACGAGCTGGGGAAATATTC AATATTGGCTCCTAAATTAAGTGCATTAACAACGAGCTGGGGAAATATTC *********	157 250 250 250
L.helveticus_R0052_RelB_5_3 L.helveticus_H10_RelB_5_5 L.helveticus_CNRZ32_RelB_5_2 L.helveticus_DPC_4571_RelB_5_1	CTGAGTTAAAGAATTTACAACAGTTGAAAGAGTGGCTGAATGAA	207 300 300 300
L.helveticus_R0052_RelB_5_3 L.helveticus_H10_RelB_5_5 L.helveticus_CNRZ32_RelB_5_2 L.helveticus_DPC_4571_RelB_5_1	AACGATTAA 216 AACGATTAA 309 AACGATTAA 309 AACGATTAA 309	

Выравнивание нуклеотидной последовательности генов группы relB6

>L.rhamnosus LOCK900

ATGGAAACAAAATCCCGTATCAGCGTGCGAATTGATACCAAAACCAAAGAACGGGGCTCTCCATGTCCTCAATAGCAT GGGACTAGATATGTCCTCAGCTATTAACATGTATTTGAAACGCATTGGTGACACTGGTGAGTTGCCATTTACACCTG AAATGTCGTTCGCCGATCAGCTTCAAGCTGCAGAAGCTGATGTTAAAGCGGGACGAACTAAGAGCTTCAAGACCGTT GATGCCCTGATGAAGGATTTATACAATGATGTTGACGATTAA

RelE1

>L.rhamnosus LOCK900

ATGATGTTGACGATTAATCGCACGCGCACTTTCAAACGACAATTTAAACATCTTCTTAGGCAAGGTAAAGATATGAC GAAACTTGCAACTGCAATTGATACTTTGCAGCGTCAAGATCGTGTAAAATTAGCTTCTTTACACGACCATGCTTTAA AGGGTGCTCACAGCGGCGAACGAGCATTGCGTGTTGCTCCTGATTGGCTTCTCGTTTATAAAGTCGATGCTGAAGCG TTAATTTTAATGCTTCTTGCAACAGGCACACCGCGGATACATTGAACATTGAGTAA

Выравнивание нуклеотидной последовательности генов группы relE2

L.rhamnosus_ATCC_8530_RelE_2_1 L.rhamnosus_LOCK908_RelE_2_1 L.rhamnosus_Lc_705_RelE_2_1 L.rhamnosus_GG_RelE_2_2 L_rhamnosus_LOCK900_RelE_2_3	ATGCCCACCTCCCTGCCCCTCATCGAACAATCCCGCTTCAAAAAACATCT ATGCCCACCTCCCTGCCCCTCATCGAACAATCCCGCTTCAAAAAACATCT ATGCCCACCTCCCTGCCCCTCATCGAACAATCCCGCTTCAAAAAACATCT ATGCCCACCTCCCTGCCCCTTATCGAACAATCCCGCTTCAAAAAACATCT ATGCCCACCTCCCTGCCCCTCATCGAACAATCCCGCTTCAAAAAACATCT ************************	50 50 50 50 50
L.rhamnosus_ATCC_8530_RelE_2_1 L.rhamnosus_LOCK908_RelE_2_1 L.rhamnosus_Lc_705_RelE_2_1 L.rhamnosus_GG_RelE_2_2 L_rhamnosus_LOCK900_RelE_2_3	CAAACAACTCCTCCAAGCCGGGCGCTTCACCAAGGCTGACTTTCAGCAAG CAAACAACTCCTCCAAGCCGGGCGCTTCACCAAGGCTGACTTTCAGCAAG CAAACAACTCCTCCAAGCCGGGCGCTTCACCAAGGCTGACTTTCAGCAAG CAAACAACTCCTACAAGCCGGCCGCTTCACTAAGGCTGACTTTCAGCAAG CAAACAACTCCTCCAAGCCGGCCGCTTCACCAAGGCTGACTTTCAACAAG ********************************	100 100 100 100 100
L.rhamnosus_ATCC_8530_RelE_2_1 L.rhamnosus_LOCK908_RelE_2_1 L.rhamnosus_Lc_705_RelE_2_1 L.rhamnosus_GG_RelE_2_2 L_rhamnosus_LOCK900_RelE_2_3	TCCTTGCTTACTTACAAACCAGCACCCCACTGCCGGAAAAGTATGACGAT TCCTTGCTTACTTACAAACCAGCACCCCACTGCCGGAAAAGTATGACGAT TCCTTGCTTACTTACAAACCAGCACCCCACTGCCGGAAAAGTATGACGAT TTCTTGCTTACTTACAAACCAGCACCCCACTGCCGGAAAAGTATGACGAT TTCTTGCTTACTTACAAACCAGCACCACTGCCGGAAAAGTATGACGAT	150 150 150 150 150
L.rhamnosus_ATCC_8530_RelE_2_1 L.rhamnosus_LOCK908_RelE_2_1 L.rhamnosus_Lc_705_RelE_2_1 L.rhamnosus_GG_RelE_2_2 L_rhamnosus_LOCK900_RelE_2_3	CACGTGATCAAAAAACGCAAACCAGATCGTGCTTTGTTCATCAAAGGTAA CACGTGATCAAAAAACGCAAACCAGATCGTGCTTTGTTCATCAAAGGTAA CACGTGATCAAAAAACGCAAACCAGATCGTGCTTTGTTCATCAAAGGTAA CACGTGATCAAAAAACGCAAACCAGATCGTGCTTTGTTCATCAAGGGTAA CACGTGATCAAAAAACGCAAGCCAGATCGCGCTTTGTTCATCAAGGGTAA *******************************	200 200 200 200 200
L.rhamnosus_ATCC_8530_RelE_2_1 L.rhamnosus_LOCK908_RelE_2_1 L.rhamnosus_LC_705_RelE_2_1 L.rhamnosus_GG_RelE_2_2 L_rhamnosus_LOCK900_RelE_2_3	TTGGCTGCTCATTTACCGAGTTGAACCAGACGCGATCCGCTTGATTGA	250 250 250 250 250
L.rhamnosus_ATCC_8530_RelE_2_1 L.rhamnosus_LOCK908_RelE_2_1 L.rhamnosus_Lc_705_RelE_2_1 L.rhamnosus_GG_RelE_2_2 L_rhamnosus_LOCK900_RelE_2_3	TTGGCCGCCATGGCGAGATTTAA 273 TTGGCCGCCATGGCGAGATTTAA 273 TTGGCCGCCATGGCGAGATTTAA 273 TCGGCCGCCATGGCGAGATTTAA 273 TTGGCCGCCATGGCGAGACTTAA 273 * *****************	

Выравнивание нуклеотидной последовательности генов группы relE3

L.casei_W56_RelE_3_1 L.casei_BL23_RelE_3_1 L.casei_BD_II_RelE_3_1 L.casei_LC2W_RelE_3_1 L.casei_Zhang_RelE_3_2 L.casei_ATCC_334_RelE_3_3 L.casei_LOCK919_RelE_3_2	ATGCCCCAATACCAACTCACAACAATCACGCTTCAAAAAGCACCTCAA ATGCCCCAATACCAACTCACAACAATCACGCTTCAAAAAGCACCTCAA ATGCCCCAATACCAACTCACCAACAATCACGCTTCAAAAAGCACCTCAA ATGCCCCAATACCAACTCACCAACAATCACGCTTCAAAAAGCACCTCAA ATGCCCCCACTACCAACTCACCAACAATCACGCTTCAAAAAGCACCTCAA ATGCCCCACTACCAACTCACCAACAATCACGCTTCAAAAAGCACCTCAA ATGCCCCACTACCAACTCACCAACAATCACGCTTCAAAAAGCACCTCAA ATGCCCCACTACCAACTCACCAACAATCACGCTTCAAAAAGCACCTCAA ATGCCCCACTACCAACTCACCAACAATCACGCTTCAAAAAGCACCTCAA	50 50 50 50 50 50
L.casei_W56_RelE_3_1 L.casei_BL23_RelE_3_1 L.casei_BD_II_RelE_3_1 L.casei_LC2W_RelE_3_1 L.casei_Zhang_RelE_3_2 L.casei_ATCC_334_RelE_3_3 L.casei_LOCK919_RelE_3_2	GCAACTCCTCCAAGCTGGCCGCTTTACTCAGAACGACTTTGAACAAGTCA GCAACTCCTCCAAGCTGGCCGCTTTACTCAGAACGACTTTGAACAAGTCA GCAACTCCTCCAAGCTGGCCGCTTTACTCAGAACGACTTTGAACAAGTCA GCAACTCCTCCAAGCTGGCCGCTTTACTCAGAACGACTTTGAACAAGTCA GCAACTCCTCCAAGCTGGCCGCTTTACTCAGAACGACTTTGAACAAGTCA GCAACTCCTCCAAGCTGGCCGCTTTACTCAGAACGACTTTGAACAAGTCA ACAACTCCTCCAAGCTGGCCGCTTTACTCAGAACGACTTTGAACAAGTCA ACAACTCCTCCAAGCTGGCCGCTTTACTCAGAACGACTTTGAACAAGTCA	100 100 100 100 100 100
L.casei_W56_RelE_3_1 L.casei_BL23_RelE_3_1 L.casei_BD_II_RelE_3_1 L.casei_LC2W_RelE_3_1 L.casei_Zhang_RelE_3_2 L.casei_ATCC_334_RelE_3_3 L.casei_LOCK919_RelE_3_2	CCAACTACTTGAAAACCGGCGACCCGCTGCCGGAAAAATACGACGATCAT CCAACTACTTGAAAACCGGCGACCCGCTGCCGGAAAAATACGACGATCAT CCAACTACTTGAAAACCGGCGACCCGCTGCCGGAAAAATACGACGATCAT CCAACTACTTGAAAACCGGCGACCCGCTGCCGGAAAAATACGACGATCAT CCAACTACCTGAAAACCGGCGACCCGCTGCCGGAAAAATACGACGATCAT CCAACTACCTGAAAACCGGCGACCCGCTGCCGGAAAAATACGACGATCAT CCAACTACCTGAAAACCGGCGACCCGCTGCCGGAAAAATACGACGATCAT	150 150 150 150 150 150 150
L.casei_W56_RelE_3_1 L.casei_BL23_RelE_3_1 L.casei_BD_II_RelE_3_1 L.casei_LC2W_RelE_3_1 L.casei_Zhang_RelE_3_2 L.casei_ATCC_334_RelE_3_3 L.casei_LOCK919_RelE_3_2	GTCATCAAAAGTCGCAAACCTGATCGCGCTTTGTTCATTAAAGGCAGCTG GTCATCAAAAGTCGCAAACCTGATCGCGCTTTGTTCATTAAAGGCAGCTG GTCATCAAAAGTCGCAAACCTGATCGCGCTTTGTTCATTAAAGGCAGCTG GTCATCAAAAGTCGCAAACCTGATCGCGCTTTGTTCATTAAAGGCAGCTG GTCATCAAAAGTCGCAAACCTGATCGCGCTTTGTTCATTAAAGGCAGCTG GTCATCAAAAGTCGCAAACCTGATCGCGCTTTGTTCATTAAAGGCAGCTG GTCATCAAAAGTCGCAAACCTGATCGCGCTTTGTTCATTAAAGGCAGCTG ***********************************	200 200 200 200 200 200 200
L.casei_W56_RelE_3_1 L.casei_BL23_RelE_3_1 L.casei_BD_II_RelE_3_1 L.casei_LC2W_RelE_3_1 L.casei_Zhang_RelE_3_2 L.casei_ATCC_334_RelE_3_3 L.casei_LOCK919_RelE_3_2	GTTGCTGATCTATCGGGTAGAAGATTTGAAGGTACGGTTGCTGGACGTGG GTTGCTGATCTATCGGGTAGAAGATTTGAAGGTACGGTTGCTGGACGTGG GTTGCTGATCTATCGGGTAGAAGATTTGAAGGTACGGTTGCTGGACGTGG GTTGCTGATCTATCGGGTAGAAGATTTGAAGGTACGGTTGCTGGACGTGG GTTGCTGATCTATCGGGTAGAAGATTTGACGGTACGGT	250 250 250 250 250 250 250
L.casei_W56_RelE_3_1 L.casei_BL23_RelE_3_1 L.casei_BD_II_RelE_3_1 L.casei_LC2W_RelE_3_1 L.casei_Zhang_RelE_3_2 L.casei_ATCC_334_RelE_3_3 L.casei_LOCK919_RelE_3_2	GGCGTCATGGGGACATTTAA 270 GGCGTCATGGGGACATTTAA 270 GGCGTCATGGGGACATTTAA 270 GGCGTCATGGGGACATTTAA 270 GGCGTCATGGTGACATTTGA 270 GGCGTCATGGTGACATTTGA 270 GGCGTCATGGTGACATTTGA 270	

Выравнивание нуклеотидной последовательности генов группы relE4

L.fermentum_IFO_3956_RelE_4_4 L.fermentum_CECT_5716_RelE_4_4 L.plantarum_P8_RelE_4_3 L.plantarum_16_RelE_4_2 L.brevis_KB290_RelE_4_5 L.buchneri_NRRL_B_30929_RelE_4 L.brevis_ATCC_367_RelE_4_6	ATGAAAAAACTAAGATTTAAACCGCGTGCAACCTTTAATGCTGATCTAAA ATGAAAAAACTAAGATTTAAACCGCGTGCAACCTTTAATGCTGATCTAAA ATGAAAAAACTAAGATTTAAACCACGTGCAACCTTTAATGCTGATCTAAA ATGAAAAAACTAAGATTTAAACCACGTGCAACCTTTAATGCTGATCTAAA ATGAAAAAACTAAGATTTAAACCACGTGCAACCTTTAATGCTGATCTAAA ATGAAAAAACTAAGATTTAAACCACGTGCAACCTTTAATGCTGATCTAAA ATGAAAAAACTAAGATTTAAACCACGTGCAACCTTTAATGCTGATCTAAA ATGAAAAAACTAAGATTTAAACCGCGTGCAACCTTTAATGCTGATCTAAA	50 50 50 50 50 50 50
L.fermentum_IFO_3956_RelE_4_4 L.fermentum_CECT_5716_RelE_4_4 L.plantarum_P8_RelE_4_3 L.plantarum_16_RelE_4_2 L.brevis_KB290_RelE_4_5 L.buchneri_NRRL_B_30929_RelE_4 L.brevis_ATCC_367_RelE_4_6	ACGGTTAGCCAGTTTAGACAAATCTATTATTGATGAAGTTCGAGCAGCCA ACGGTTAGCCAGTTTAGACAAATCTATTATTGATGAAGTTCGAGCAGCCA ACGGTTAGCCAGTTTAGACAAATCTATTATTGATGAAGTTCGAGCAGCCA ACGGTTAGCCAGTTTAGACAAATCTATTATTGATGAAGTTCGAGCAGCCA ACGGTTAGCCAGTTTAGACAAATCTATTATTGATGAAGTTCGAGCAGCCA ACGGTTAGCCAGTTTAGACAAATCTATTATTGATGAAGTTCGAGCAGCCA GCGATTAGCCAGTTTAGATAAAACTATTATTGACGAAGTTCGAGCAGCCG .**.*******************************	100 100 100 100 100 100
L.fermentum_IFO_3956_RelE_4_4 L.fermentum_CECT_5716_RelE_4_4 L.plantarum_P8_RelE_4_3 L.plantarum_16_RelE_4_2 L.brevis_KB290_RelE_4_5 L.buchneri_NRRL_B_30929_RelE_4 L.brevis_ATCC_367_RelE_4_6	TTGACCTGTTGCTTGAGCAACAACAACTACCACCAGAATTTGAAGATCAT TTGACCTGTTGCTTGAGCAACAACAACTACCACCAGAATTTGAAGATCAT TTGACCTATTGCTTGAGCAACAACAACTAACCATCAGAATTTGAAGATCAT TTGACCTGTTGCTTGAGCAACAACAACTAACCACCAGAATTTGAAGATCAT TTGACCTGTTGCTTGAGCAACAACAACTAACCACCAGAATTTGAAGATCAT TTGACCTGTTGCTTGAGCAACAACAACTACCACCAGAATTTGAAGATCAT TTGACCTATTGCTCGAACAACAACAATTACCACCAGAATTTGAAGATCAT ********	150 150 150 150 150 150 150
L.fermentum_IFO_3956_RelE_4_4 L.fermentum_CECT_5716_RelE_4_4 L.plantarum_P8_RelE_4_3 L.plantarum_16_RelE_4_2 L.brevis_KB290_RelE_4_5 L.buchneri_NRRL_B_30929_RelE_4 L.brevis_ATCC_367_RelE_4_6	GAGCTTAATCGGCGAATGAGCGGTTATAATGAATTTCACTTACGAGATAC GAGCTTAATCGGCGAATGAGCGGTTATAATGAATTTCACTTACGAGATAC GAGCTTAATCGGCGAATGAGCGGTTATAATGAATTTCACTTACGAGATAC GAGCTTAATCGGCGAATGAGCGGGTATAATGAATTTCACTTACGAGATAC GAACTTAATCGGCGAATGAGCGGGTATAATGAATTTCACTTACGAGATAC GAGCTTAATCGGCGAATGAGCGGGTATAATGAATTTCACTTACGAGATAC CAGCTTAATCGGCGAATGAGCGGGTATAATGAATTTCACTTACGAGATAC	200 200 200 200 200 200 200
L.fermentum_IFO_3956_RelE_4_4 L.fermentum_CECT_5716_RelE_4_4 L.plantarum_P8_RelE_4_3 L.plantarum_16_RelE_4_2 L.brevis_KB290_RelE_4_5 L.buchneri_NRRL_B_30929_RelE_4 L.brevis_ATCC_367_RelE_4_6	CCCGAAAAACAAAACACCAAGCGAAACTAACGATGTCCTGGTTGTTTATA CCCGAAAAACAACACCAAGCGAAACTAACGATGTCCTGGTTGTTTATA CCCGAAAAACAACACCAAGCGAAACTAACGATGTCCTGGTGGTTTATA CCCGAAAAACAAAAC	250 250 250 250 250 250 250
L.fermentum_IFO_3956_RelE_4_4 L.fermentum_CECT_5716_RelE_4_4 L.plantarum_P8_RelE_4_3 L.plantarum_16_RelE_4_2 L.brevis_KB290_RelE_4_5 L.buchneri_NRRL_B_30929_RelE_4 L.brevis_ATCC_367_RelE_4_6	TGATTGATAAAGATGAACTAGTCTTAATTGGCATTCGAGTCGGATCGCAT TGATTGATAAAGATGAACTAGTCTTAATTGGCATTCGAGTCGGATCGCAT CGATTGATAAAGATGAACTAGTCTTAATTGGCATTCGAGTCGGATCGCAT CGATTGATAAAGATGAACTAGTCTTAATTGGCATTCGAGTCGGATCGCAT CGATTGATAAAGATGAACTAGTCTTAATTGGAATTCGAGTCGGATCGCAT CGATTGATAAAGATGAACTAGTCTTAATTGGAATTCGAGTCGGATCGCAT	300 300 300 300 300 300 300
L.fermentum_IFO_3956_RelE_4_4 L.fermentum_CECT_5716_RelE_4_4 L.plantarum_P8_RelE_4_3 L.plantarum_16_RelE_4_2 L.brevis_KB290_RelE_4_5 L.buchneri_NRRL_B_30929_RelE_4 L.brevis_ATCC_367_RelE_4_6	GATCGTTTATTTCCTGGTCAAAATCGTTCCAAAAGGTATCGAAAAAATGA GATCGTTTATTTCCTGGTCAAAATCGTTCCAAAAGGTATCGAAAAAATGA GATCGTTTATTTCCTGGTCAAAATCGTTCCAAAAGGTATCGAAAAAATGA GATCGTTTATTTCCTGGTCAAAATCGTTCCAAAAGGTATCGAAAAAATGA GATCGTTTATTTCCTGGTCAAAATCGTTCTAAAAGGTATCGAAAAAATAA GATCGTTTATTTCCTGGTCAAAATCGTTCTAAAAGGTATCGAAAAAATGA	350 350 350 350 350 350 350
L.fermentum_IFO_3956_RelE_4_4 L.fermentum_CECT_5716_RelE_4_4 L.plantarum_P8_RelE_4_3 L.plantarum_16_RelE_4_2 L.brevis_KB290_RelE_4_5 L.buchneri_NRRL_B_30929_RelE_4	CGAATAA 357 CGAATAA 357 CGAATAA 357 CGAATAA 357 CGAATAA 357 CGAATAA 357 CGAATAA 357 CGAATAA 357	
L.brevis_ATCC_367_RelE_4_6

CAAATAG 357 *.****

L.helveticus_DPC_4571_RelE_5_3 L.helveticus_CNRZ32_RelE_5_4 L.helveticus_H10_RelE_5_1 L.helveticus_R0052_RelE_5_2	ATGTCAAAATTAGTATTTAGACCACGTGCAACATTTAATGCTGATATGAG ATGTCAAAATTAGTATTTAGACCACGTGCAACATTTAATGCTGATATGAG ATGTCAAAATTAGTATTTAGACCACGTGCAACATTTAATGCTGATATGAG ATGAG *****	50 50 50 5
L.helveticus_DPC_4571_RelE_5_3 L.helveticus_CNRZ32_RelE_5_4 L.helveticus_H10_RelE_5_1 L.helveticus_R0052_RelE_5_2	ACGTCTTGGAAAACTTGATCCAACAATAATTGATGACGTCAGAGTAGCTA ACGTCTTGGAAAACTTGATCCAACAATAATTGATGACGTCAGAGTAGCTA ACGTCTTGGAAAACTTGATCCAACAATAATTGATGACGTCAGAGCAGCTA ACGTCTTGGAAAACTTGATCCAACAATAATTGATGACGTCAGAGCAGCTA ************************************	100 100 100 55
L.helveticus_DPC_4571_RelE_5_3 L.helveticus_CNRZ32_RelE_5_4 L.helveticus_H10_RelE_5_1 L.helveticus_R0052_RelE_5_2	TCGAAGAATTACTCGAAACTGGTACGTTATCTGAAGAATATCGTGACCAT TCGAAGAATTACTCGAAACTGGTACGTTATCTGAAGAATATCGTGACCAT TCGAAGAATTACTCGAAACTGGTACGTTATCTGAAGAATATCGTGACCAT TCGAAGAATTACTCGAAACTGGTACGTTATCTGAAGAATATCGTGACCAT ********	150 150 150 105
L.helveticus_DPC_4571_RelE_5_3 L.helveticus_CNRZ32_RelE_5_4 L.helveticus_H10_RelE_5_1 L.helveticus_R0052_RelE_5_2	CCTTTAAAAAGGCGACTAGCTGATTATCGCGAATTTCATGTTAGAGATAC CCTTTAAAAAGGCGACTAGCTGGTTATCGCGAATTTCATGTTAGAGATAC CCTTTAAAAAGGCGACTAGCTGGTTATCGCGAATTTCATGTTAGAGATAC CCTTTAAAAAGGCGACTAGCTGGTTATCGCGAATTTCATGTTAGAGATAC ***********************************	200 200 200 155
L.helveticus_DPC_4571_RelE_5_3 L.helveticus_CNRZ32_RelE_5_4 L.helveticus_H10_RelE_5_1 L.helveticus_R0052_RelE_5_2	CCCTAAAGGTGAGCAGCCTAACGATATAAATGATGTATTAGTCATTTGGT CCCTAAAGGTGAGCAGCCTAACGATATAAATGATGTATTAGTCATTTGGT CCCTAAAGGTGAGCAGCCTAACGATATAAATGATGTATTAGTCATTTGGT CCCTAAAGGTGAGCAGCCTAACGATATAAATGATGTATTAGTCATTTGGT ********	250 250 250 205
L.helveticus_DPC_4571_RelE_5_3 L.helveticus_CNRZ32_RelE_5_4 L.helveticus_H10_RelE_5_1 L.helveticus_R0052_RelE_5_2	ATATTGAACACAATAACTTAGTGGTAGTTGGTGTACGAGTAGGCTCTCAC ATATTGAACACAATAACTTAGTGGTAGTTGGTGTACGAGTAGGCTCTCAC ATATTGAACACAATAACTTAGTGGTAGTTGGTGTACGAGTAGGCTCTCAC ATATTGAACACAATAACTTAGTGGTAGTTGGTGTACGAGTAAGCTCTCAC ***********	300 300 300 255
L.helveticus_DPC_4571_RelE_5_3 L.helveticus_CNRZ32_RelE_5_4 L.helveticus_H10_RelE_5_1 L.helveticus_R0052_RelE_5_2	СААССАСТСТТТССАССТТТАААТААСТСТАСАААСТТТССТАААТА СААССАСТСТТТССАССТТТАААТААСТСТАСАААСТТТССТАААТА СААССАСТАСТСТТТССАССТТТАААТААСТСТАСАААСТТТССТАААТА СААССАСТСТТТССАССТТТАААТААСТСТАСАААСТТТССТАААТА ***** ***************************	347 347 350 302
L.helveticus_DPC_4571_RelE_5_3 L.helveticus_CNRZ32_RelE_5_4 L.helveticus_H10_RelE_5_1 L.helveticus_R0052_RelE_5_2	G 348 G 348 G 351 G 303	

L.casei_LC2W L.casei_BD_II L.casei_BL23 L.casei_W56	ATGTATAGTCTGGTTCCGACGCCTACATTTAAGCGCGATCTAAAACGACTCTCCAAGAAG ATGTATAGTCTGGTTCCGACGCCTACATTTAAGCGCGATCTAAAACGACTCTCCAAGAAG ATGTATAGTCTGGTTCCGACGCCTACATTTAAGCGCGATCTAAAACGACTCTCCAAGAAG ATGTATAGTCTGGTTCCGACGCCTACATTTAAGCGCGATCTAAAACGACTCTCCAAGAAG *****	60 60 60 60
L.casei_LC2W L.casei_BD_II L.casei_BL23 L.casei_W56	CATTGGCCGATGGACGAACTAAAGACGGCTGTTAATCTCCTAGCTGCTGGTACAAATGCT CATTGGCCGATGGACGAACTAAAGACGGCTGTTAATCTCCTAGCTGCTGGTACAAATGCT CATTGGCCGATGGACGAACTAAAGACGGCTGTTAATCTCCTAGCTGCTGGTACAAATGCT CATTGGCCGATGGACGAACTAAAGACGGCTGTTAATCTCCTAGCTGCTGGTACAAATGCT ***********************************	120 120 120 120
L.casei_LC2W L.casei_BD_II L.casei_BL23 L.casei_W56	GAACTATTAAGCAAAAAGTATGCAGATCATGCCTTGTCTTCAAGCAGCGAGTGGAAAGGA GAACTATTAAGCAAAAAGTATGCAGATCATGCCTTGTCTTCAAGCAGCGAGTGGAAAGGA GAACTATTAAGCAAAAAGTATGCAGATCATGCCTTGTCTTCAAGCAGCGAGTGGAAAGGA GAACTATTAAGCAAAAAGTATGCAGATCATGCCTTGTCTTCAAGCAGCGAGTGGAAAGGA ***************************	180 180 180 180
L.casei_LC2W L.casei_BD_II L.casei_BL23 L.casei_W56	TATCGTGAACTACATGTTGACGGCCCTCGTGGCGACTGGTTGCTAATCTATAAAATTAAG TATCGTGAACTACATGTTGACGGCCCTCGTGGCGACTGGTTGCTAATCTATAAAATTAAG TATCGTGAACTACATGTTGACGGCCCTCGTGGCGACTGGTTGCTAATCTATAAAATTAAG TATCGTGAACTACATGTTGACGGCCCTCGTGGCGACTGGTTGCTAATCTATAAAATTAAG	240 240 240 240
L.casei_LC2W L.casei_BD_II L.casei_BL23 L.casei_W56	CAGCAAGATCTCATTTTGACCCTGGTTAGAACTGGATCTCATCATAACCTTTTGGGTAAA CAGCAAGATCTCATTTTGACCCTGGTTAGAACTGGATCTCATCATAACCTTTTGGGTAAA CAGCAAGATCTCATTTTGACCCTGGTTAGAACTGGATCTCATCATAACCTTTTGGGTAAA CAGCAAGATCTCATTTTGACCCTGGTTAGAACTGGATCTCATCATAACCTTTTGGGTAAA	300 300 300 300
L.casei_LC2W L.casei_BD_II L.casei_BL23 L.casei_W56	TAG 303 TAG 303 TAG 303 TAG 303	

L.reuteri_I5007_RelE_7_2 L.reuteri_TD1_RelE_7_1	ATGTCTTATTACTCTTTTCGGCCACGCAAAACATTTAATGCTGATTTAGC ATGTCTTATTACTCTTTTCGGCCACGCAAAACATTTAATGCTGATTTAGC ************************************	50 50
L.reuteri_I5007_RelE_7_2 L.reuteri_TD1_RelE_7_1	ACGTCTTGGTAAATTAGACCCATCAATTATCGATGACATTCATGAGGCCA ACGTCTTGGTAAATTAGCCCCATCAATTATCGATGACATTCACGAGGCCA *****************************	100 100
L.reuteri_I5007_RelE_7_2 L.reuteri_TD1_RelE_7_1	TTGATATTTTGCTCAATGGCGATGTTCTCCCCCAAAGAATATAGGGATCAT TTGATATTTTGCTCAATGGCGATGCCCTCCCTAAAGAATATAGAGATCAT **********************************	150 150
L.reuteri_I5007_RelE_7_2 L.reuteri_TD1_RelE_7_1	AACTTACAAAGAAAATATGCCGGTTACAGAGAATTTCATGTCAGGGATAC AACTTGCAAAGAAAATATGCCGGTTACAGAGAATTTCATGTTAGAGATAC *****.*******************************	200 200
L.reuteri_I5007_RelE_7_2 L.reuteri_TD1_RelE_7_1	TCCCAAAGGTGCAAAACCTACGAAGACCAATGATGTGCTAGTAATCTATA TCCTAAGGGCGTAAAACCTACGAAAACCAACGATGTGCTAATAATCTATA *** **.** * **************************	250 250
L.reuteri_I5007_RelE_7_2 L.reuteri_TD1_RelE_7_1	AGATTGACCATCAAGATCTTGTATTAGTTGCTGTACGAGCAGGTTCTCAC AGATTGACCATCAAGATCTTGTATTAGTTGCTGTACGAGCAGGTTCTCAC ********************************	300 300
L.reuteri_I5007_RelE_7_2 L.reuteri_TD1_RelE_7_1	AATATTCTTTTTTAATAAGGGTTATCGAAAAAAAAAAAA	

L.acidophilus_La_14 L.acidophilus_NCFM	ATGGCAAGATTACAATTTAGGCCACGTGCTACTTTCAACGCTGATTTAAAACGCTTAGGA ATGGCAAGATTACAATTTAGGCCACGTGCTACTTTCAACGCTGATTTAAAACGCTTAGGA *********************************	60 60
L.acidophilus_La_14 L.acidophilus_NCFM	CGTCTTGATCCAACTATTATTGATGATGTACGAGCAGCGATTGATGAATTATTAGAAAAT CGTCTTGATCCAACTATTATTGATGATGTACGAGCAGCGATTGATGAATTATTAGAAAAT *****************	120 120
L.acidophilus_La_14 L.acidophilus_NCFM	GGCGTATTACCTGATGAGTATGACGATCATCCACTTAAGCGACGGCTAGCTGGATATCGA GGCGTATTACCTGATGAGTATGACGATCATCCACTTAAGCGACGGCTAGCTGGATATCGA ************************************	180 180
L.acidophilus_La_14 L.acidophilus_NCFM	GAATTTCATGTTCGTGATACCCCTCACGGAAAGCACCCAAACGATATTAATGATGTATTA GAATTTCATGTTCGTGATACCCCTCACGGAAAGCACCCAAACGATATTAATGATGTATTA *********************	240 240
L.acidophilus_La_14 L.acidophilus_NCFM	GTGATTTGGTACGTAGAACGTAATGAATTAATTGCAGTTGGTGTGCGAGTCGGCTCACAT GTGATTTGGTACGTAGAACGTAATGAATTAATTGCAGTTGGTGTGCGAGTCGGCTCACAT ******	300 300
L.acidophilus_La_14 L.acidophilus_NCFM	GATCGATTGTTTCCAAATCAAAATAGTTTAAAGAAATATCATAAATAG 348 GATCGATTGTTTCCAAATCAAAATAGTTTAAAGAAATATCATAAATAG 348	

L.rhamnosus_ATCC_8530 L.rhamnosus_LOCK908 L.rhamnosus_Lc_705	ATGATTAAAACCTGGACCGATGATGCTTGGGCGGACTACATGTATTGGCA ATGATTAAAACCTGGACCGATGATGCTTGGGCGGACTACATGTATTGGCA ATGATTAAAACCTGGACCGATGATGCTTGGGCGGACTACATGTATTGGCA ***********************************	50 50 50
L.rhamnosus_ATCC_8530 L.rhamnosus_LOCK908 L.rhamnosus_Lc_705	TGATCAAAACGACAAGCGGACAATCAAACGAATTAATCAACTCATTCAAG TGATCAAAACGACAAGCGGACAATCAAACGAATTAATCAACTCATTCAAG TGATCAAAACGACAAGCGGACAATCAAACGAATTAATCAACTCATTCAAG ***********************************	100 100 100
L.rhamnosus_ATCC_8530 L.rhamnosus_LOCK908 L.rhamnosus_Lc_705	CCATTGACCGTGACCCTTATAAAGGCATCGGAAAACCTGAGCCACTTAGA CCATTGACCGTGACCCTTATAAAGGCATCGGAAAACCTGAGCCACTTAGA CCATTGACCGTGACCCTTATAAAGGCATCGGAAAACCTGAGCCACTTAGA **********************************	150 150 150
L.rhamnosus_ATCC_8530 L.rhamnosus_LOCK908 L.rhamnosus_Lc_705	TATGCGCTAACCGGAAAATGGTCACGTCGGATTGATCAGGAAAATCGCAT TATGCGCTAACCGGAAAATGGTCACGTCGGATTGATCAGGAAAATCGCAT TATGCGCTAACCGGAAAATGGTCACGTCGGATTGATCAGGAAAATCGCAT ************************************	200 200 200
L.rhamnosus_ATCC_8530 L.rhamnosus_LOCK908 L.rhamnosus_Lc_705	CATCTACAGCATTGAAAAGAACCACATTAATATTTTCGCCTGCCGCACTC CATCTACAGCATTGAAAAGAACCACATTAATATTTTCGCCTGCCGCACTC CATCTACAGCATTGAAAAGAACCACATTAATATTTTCGCCTGCCGCACTC **********************************	250 250 250
L.rhamnosus_ATCC_8530 L.rhamnosus_LOCK908 L.rhamnosus_Lc_705	ACTACAGTTAA 261 ACTACAGTTAA 261 ACTACAGTTAA 261	

Выравнивание нуклеотидной последовательности генов группы уоеВ2

L.helveticus R0052 YoeB 2 2 L.helveticus_H10_YoeB_2_3 L.helveticus_DPC_4571_YoeB_2_1 L.helveticus CNRZ32 YoeB 2 4 L.helveticus R0052 YoeB 2 2 L.helveticus_H10_YoeB_2_3 L.helveticus_DPC_4571_YoeB_2_1 L.helveticus CNRZ32 YoeB 2 4 L.helveticus R0052 YoeB 2 2 L.helveticus H10 YoeB 2 3 L.helveticus_DPC_4571_YoeB_2_1 L.helveticus CNRZ32 YoeB 2 4 L.helveticus R0052 YoeB 2 2 L.helveticus H10 YoeB 2 3 L.helveticus_DPC_4571_YoeB_2_1 L.helveticus_CNRZ32_YoeB 2_4 L.helveticus_R0052_YoeB_2_2 L.helveticus H10 YoeB 2 3 L.helveticus_DPC_4571_YoeB_2_1 L.helveticus_CNRZ32_YoeB_2_4 L.helveticus R0052 YoeB 2 2

L.helveticus_R0052_16eB_2_2 L.helveticus_H10_YoeB_2_3 L.helveticus_DPC_4571_YoeB_2_1 L.helveticus_CNRZ32_YoeB_2_4

ATGACGAAGCTTAACGTAAATTTTAACTATAATGCCTGGGATGAATATCT	50
ATGACGAAGCTTAACGTAAATTTTAACTATAATGCCTGGGATGAATATCT	50
ATGACGAAGCTTAACGTAAATTTTAACTATAATGCCTGGGATGAATATCT	50
ATGACGAAGCTTAACGTAAATTTTAACTATAATGCCTGGGATGAATATCT	50

AGAGTGGAAGAAAGAAGATAAAAAAACTTCAAAGAAAATCGATGGTCTCA	100

TTAGAGATTGTCAACGCCATCCATTCACTGGAAAAGGAAAACCTGAGCCT	150
* * * * * * * * * * * * * * * * * * * *	
TTAAAGGCAAATTTAAGCGGTACATGGTCTCGAAAAATTAATCACAAAGA	200
TTAAAGGCAAATTTAAGCGGTACATGGTCTCGAAAAATTAATCACAAAGA	200
TTAAAGGCAAATTTAAGCGGTACATGGTCTCGAAAAATCAATC	200
TTAAAGGCAAATTTAAGCGGTACATGGTCTCGAAAAATCAATC	200

${\tt TCGTATGGTTTATTCAGTTACGGCAACAGAACTTCAAATATGGCAACTAA$	250
TCGTATAGTTTATTCAGTTACGGCAACAGAACTTCAAATATGGCAACTAA	250
${\tt TCGTATGGTTTATTCAGTTACGGCAACAGAACTTCAAATATGGCAACTAA$	250
${\tt TCGTATGGCTTATTCAGTTACGGCAACAGAACTTCAAATATGGCAACTAA$	250
***** * ******************************	
AATATCACTATTCTAAATAG 270	
* * * * * * * * * * * * * * * * * * * *	

>L.crispatus ST1

ATGATCGTAGCATGGACGGATGATGGTTGGAACGACTATGTGTATTGGTATGACGATGGTGATTATAAAAAGGTATCAAGAATAAACGATCTTG TGAAAGATATGAAAAGACATCCATTTACAGGTATTGGTAAGCCTGAGCCCTTAAAGAGAAATCTATCAGGGTTATGGTCAAGACGAATCGATTC GAAAAATCGGATCGTCTATGATTGTCATAAATCAATGATAACTATATATTCATGTAAGGATCACTATTGA

L.buchneri_NRRL_B_30929_YefM_1 L.plantarum_P8_YefM_1_4 L.plantarum_16_YefM_1_2 L.brevis_KB290_YefM_1_3 L.brevis_ATCC_367_YefM_1_5 L.fermentum_IFO_3956_YefM_1_1 L.fermentum_CECT_5716_YefM_1_1	ATGACATTAGCACTAACACAGAGCGATTTTCGCGCTAACCTAAAAAAATA ATGACATTAGCACTAACACAGAGCGATTTTCGCGCTAACCTAAAAAAATA ATGACATTAGCACTAACACAGAGCGATTTTCGCGCTAACTTAAAAAAATA ATGACATTAGCATTAACACAGAGCGATTTTCGCGCTAACCTAAAAAAATA ATGACATTAGCACTAACACAGAGCGATTTTCGCGCTAACCTAAAAAAATA ATGACATTAGCACTAACACAGAGCGATTTTCGCGCTAACTTAAAAAAATA ATGACATTAGCACTAACACAGAGCGATTTTCGCGCTAACTTAAAAAAATA	50 50 50 50 50 50 50
L.buchneri_NRRL_B_30929_YefM_1 L.plantarum_P8_YefM_1_4 L.plantarum_16_YefM_1_2 L.brevis_KB290_YefM_1_3 L.brevis_ATCC_367_YefM_1_5 L.fermentum_IF0_3956_YefM_1_1 L.fermentum_CECT_5716_YefM_1_1	TTTAGATCAAGTTAATGACGAAGACGAAACCGTTTATATTGCTCGTTCAA TTTAGATCAAGTTAATGACGAAGACGAAACCGTTTATATTGCTCGTTCAA TTTAGATCAAGTTAATGACGAAGACGAAACCGTTTATATTGCTCGTTCAA TTTAGATCAAGTTAATGACGAAGACGAAACCGTTTATATTGCTCGTTCAA TTTAGATCAAGTTAATGACGAAGACGAAACAGTTTATATTGCTCGTTCCA TTTAGATCAAGTTAATGACGAAGACGAAACAGTTTATATTGCTCGTTCCA ***.********************************	100 100 100 100 100 100
L.buchneri_NRRL_B_30929_YefM_1 L.plantarum_P8_YefM_1_4 L.plantarum_16_YefM_1_2 L.brevis_KB290_YefM_1_3 L.brevis_ATCC_367_YefM_1_5 L.fermentum_IF0_3956_YefM_1_1 L.fermentum_CECT_5716_YefM_1_1	ATAGTCGCGCAGTAGCCATCGTTTCACAAGAAAAATGGACTGGCTAGAA ATAGTCGCGCAGTAGCCATCGTTTCACAAGAAAAATGGACTGGCTAGAA ATAGTCGCGCAGTAGCCATCGTTTCACAAGAAAAATGGACTGGCTAGAA ATAGTCGCGCAGTAGCCATCGTTTCACAAGAAAAATGGACTGGCTAGAA ATAGTCGCGCAGTGGCCATCGTTTCGCAAGAAAAATGGACTGGCTAGAA ACAGTCGCGCAGTGGCCATCGTTTCACAAGAAAAATGGACTGGCTAGAA ACAGTCGCGCAGTGGCCATCGTTTCACAAGAAAAATGGACTGGCTAGAA * *********************************	150 150 150 150 150 150 150
L.buchneri_NRRL_B_30929_YefM_1 L.plantarum_P8_YefM_1_4 L.plantarum_16_YefM_1_2 L.brevis_KB290_YefM_1_3 L.brevis_ATCC_367_YefM_1_5 L.fermentum_IF0_3956_YefM_1_1 L.fermentum_CECT_5716_YefM_1_1	AGAGCATTAAAAGCTAAAGAAGGTTCGTTAGAATATGCAATTGCACGTGA AGAGCATTAAAAGCTAAAGAAGGTTCGTTAGAATATGCAATTGCACGTGA AGAGCATTAAAAGCTAAAGAAGGTTCGTTAGAATATGCAATTGCACGTGA AGAGCATTAAAAGCGAAAGAAGGTTCGTTAGAATATGCAATTGCCACGTGA AGAGCATTAAAAGCGAAAGAAGGTTCGTTAGACTATGCCATTGCGCGTGA AGAGCATTAAAAGCGAAAGAAGGCTCGTTAGAATATGCCATTGCGCGTGA AGAGCATTAAAAGCGAAAGAAGGCTCGTTAGAATATGCCATTGCGCGTGA ***********************************	200 200 200 200 200 200 200
L.buchneri_NRRL_B_30929_YefM_1 L.plantarum_P8_YefM_1_4 L.plantarum_16_YefM_1_2 L.brevis_KB290_YefM_1_3 L.brevis_ATCC_367_YefM_1_5 L.fermentum_IF0_3956_YefM_1_1 L.fermentum_CECT_5716_YefM_1_1	TCAGTTAATTAAACGCCATGTTTTACCTGACGATGAAATTGTTGAATCAG TCAGTTAATTAAACGCCATGTTTTACCTGACGATGAAATTGTTGAATCAG TCAGTTAATTAAACGCCATGTTTTACCTGACGATGAAATTGTTGAATCAG TCAGTTAATTAAACGCCATGTTTTACCTGACGATGAAATTGTTGAATCAA TCAGTTAATTAAACGCCATGTTTTACCTGACGATGAAATTGTTGAATCAA TCAGTTAATTAAACGCCATGTTTTACCTGACGATGAAATTGTTGAATCAA TCAGTTAATTAAACGCCATGTTTTACCTGACGATGAAATTGTTGAATCAA	250 250 250 250 250 250 250
L.buchneri_NRRL_B_30929_YefM_1 L.plantarum_P8_YefM_1_4 L.plantarum_16_YefM_1_2 L.brevis_KB290_YefM_1_3 L.brevis_ATCC_367_YefM_1_5 L.fermentum_IF0_3956_YefM_1_1 L.fermentum_CECT_5716_YefM_1_1	ATGATGATTATTGGGGTCAGTTTAAATAA 279 ATGATGATTATTGGGGTCAGTTTAAATAA 279 ATGATGATTATTGGGGTCAGTTTAAATAA 279 ATGATGATTATTGGGGTCAGTTTAAATAA 279 ATGATGATTATTGGGGTCAGTTTAAACAATGA 282 ATGATGATTATTGGGGTCAGTTTAAACAATGA 282	

L.salivarius_UCC118_YefM_2_1 L.salivarius_CECT_5713_YefM_2_	ATGCCAATTGCTTCTACTCAAAGTGATTTCCGTAATCATATTAAAGACTA ATGCCAATTGCTACTACTCAAAGTGATTTCCGTAATCATATTAAAGACTA ***********************************	50 50
L.salivarius_UCC118_YefM_2_1 L.salivarius_CECT_5713_YefM_2_	CTTAGATAAAGTTAATGATGAAAAATCAAACAGTACTAATTGCACGTTCTA CTTAGATAAAGTTAATGATGAAAATCAAACAGTACTAATTGCACGTTCTA **********************************	100 100
L.salivarius_UCC118_YefM_2_1 L.salivarius_CECT_5713_YefM_2_	ATCAACGAGCAGCAGCTGTTATCTCACAAGAACAACTCAATACCCTTCTT ATCAACGAGCAGCAGCTGTTATCTCACAAGAACAACTCAATACCCTTCTT *******************	150 150
L.salivarius_UCC118_YefM_2_1 L.salivarius_CECT_5713_YefM_2_	GAGGCTGTTAATGCTAAAGAAGATTCACTAGATTATGCTATTACTAGAGA GAGGCTGTTAATGCTAAAGAAGATTCACTAGATTATGCTATTGCTAGAGA *********************************	200 200
L.salivarius_UCC118_YefM_2_1 L.salivarius_CECT_5713_YefM_2_	TAAGTTAATCGAAATGCATATCTTACCTGATGATCCTATCGTTGAACCAA TAAGTTAATCGAAATGCATATCTTACCTGATGATCCTATCGTTGAACCAA ********************************	250 250
L.salivarius_UCC118_YefM_2_1 L.salivarius_CECT_5713_YefM_2_	CTGACGATTATTGGAATAGTTTTAAGCCAAAGGATAACAGTAACCAATGA CTGACGATTATTGGAATAGTTTTAAGCCAAAGGATAACAGTAACCAATGA **********************************	300 300

L.helveticus_H10_YefM_3_2 L.helveticus_DPC_4571_YefM_3_1 L.helveticus_CNRZ32_YefM_3_2 L.helveticus_R0052_YefM_3_3	ATGCTACAAACACCAAATAATATTAAAGCAGTTACTGCTCGTGACCTACG ATGCTACAACCACCAAATAATATTAAAGCAGTTACTGCTCGTGACCTACG ATGCTACAAACACCAAATAATATTAAAGCAGTTACTGCTCGTGACCTACG ATGCTACAAACACCTAATAATATTAAAGCAGTTACTGCTCGTGACCTACG *********	50 50 50 50
L.helveticus_H10_YefM_3_2 L.helveticus_DPC_4571_YefM_3_1 L.helveticus_CNRZ32_YefM_3_2 L.helveticus_R0052_YefM_3_3	TAATAACTTTAAAAAAATTGCTGATGACATTAATGACTATGATACTACAG TAATAACTTTAAAAAAATTGCTGATGACATTAATGACTATGATACTACAG TAATAACTTTAAAAAAATTGCTGATGACATTAATGACTATGATACTACAG TAATAACTTTAAAAAAATTGCTGATGACATTAATGACTATGATACTACAG ***********************************	100 100 100 100
L.helveticus_H10_YefM_3_2 L.helveticus_DPC_4571_YefM_3_1 L.helveticus_CNRZ32_YefM_3_2 L.helveticus_R0052_YefM_3_3	TTATTGTTGCTCGTCCTAAAGACAAAAACGTCGTAATTATTTCACAAAAA TTATTGTTGCTCGTCCTAAAGACAAAAACGTCGTAATTATTTCACAAAAA TTATTGTTGCTCGTCCTAAAGACAAAAACGTCGTAATTATTTCACAAAAA TTATTGTTGCTCGTCCTAAAGACAAAAACGTCGTAATTATTTCACAAAAA **********************	150 150 150 150
L.helveticus_H10_YefM_3_2 L.helveticus_DPC_4571_YefM_3_1 L.helveticus_CNRZ32_YefM_3_2 L.helveticus_R0052_YefM_3_3	GAATATGATTCATGGCAAGAGACCTCATATCTTCTAGGGACTAAGGCAAA GAATATGATTCATGGCAAGAGACCTCATATCTTCTAGGGACTAAGGCAAA GAATATGATTCATGGCAAGAGACCTCATATCTTCTAGGGACTAAGGCAAA GAATATGATTCATGGCAAGAGACCTCATATCTTCTAGGGACTAAGGCAAA **********	200 200 200 200
L.helveticus_H10_YefM_3_2 L.helveticus_DPC_4571_YefM_3_1 L.helveticus_CNRZ32_YefM_3_2 L.helveticus_R0052_YefM_3_3	TCGTGATGCATTAGCAGAAGCTAAAGAATCGTTTGAAAATAAAGATACCC TCGTGATGCATTAGCAGAAGCTAAAGAATCGTTTGAAAATAAAGATACCC TCGTGATGCATTAGCAGAAGCTAAAGAATCGTTTGAAAATAAAGATACCC TCGTGATGCATTAGCAGAAGCTAAAGAATCGTTTGAAAATAAAGATACCC *********************************	250 250 250 250
L.helveticus_H10_YefM_3_2 L.helveticus_DPC_4571_YefM_3_1 L.helveticus_CNRZ32_YefM_3_2 L.helveticus_R0052_YefM_3_3	GAAACAAAATCTTAACCCCAGAAGAATTCGAGGCTCTAACTAA	300 300 300 300
L.helveticus_H10_YefM_3_2 L.helveticus_DPC_4571_YefM_3_1 L.helveticus_CNRZ32_YefM_3_2	GAAGCTTAA 309 GAAGCTTAA 309 GAAGCTTAA 309	

L.acidophilus_La_14 L.acidophilus_NCFM	ATGACCTTAGCATTAACACAAAGTGATTTTAGAGCTCACATAAAAAAATATTTAGATCAA ATGACCTTAGCATTAACACAAAGTGATTTTAGAGCTCACATAAAAAAATATTTAGATCAA **********************************	60 60
L.acidophilus_La_14 L.acidophilus_NCFM	GTAAATGACGATGATGAAGTAGTATATGTTGCTAGATCTAATAGCCGCTCAGTTGCTGTC GTAAATGACGATGATGAAGTAGTATATGTTGCTAGATCTAATAGCCGCTCAGTTGCTGTC *****	120 120
L.acidophilus_La_14 L.acidophilus_NCFM	CTTTCTCAGGAAAAATTATATTGGATGGAAAAAGCGTTGCAAGCTAAGGAGGATTCTTTA CTTTCTCAGGAAAAATTATATTGGATGGAAAAAGCGTTGCAAGCTAAGGAGGATTCTTTA *******************************	180 180
L.acidophilus_La_14 L.acidophilus_NCFM	GATTATGCTATTGCTCGTGATCAATTAATTCAACGTCATGTATTACCAGATGATCCTGTT GATTATGCTATTGCTCGTGATCAATTAATTCAACGTCATGTATTACCAGATGATCCTGTT *****	240 240
L.acidophilus_La_14 L.acidophilus_NCFM	GTAAAATCGAATGATGATTATTGGGAGCAGTTTAAATAA 279 GTAAAATCGAATGATGATTATTGGGAGCAGTTTAAATAA 279 ***********	

L.rhamnosus_LC_705 L.rhamnosus_LOCK908 L.rhamnosus_ATCC_8530	ATGGAAGCAACGAATTATAGTGATTTCCGCCGCAACCTTAAGCATTATAT ATGGAAGCAACGAATTATAGTGATTTCCGCCGCAACCTTAAGCATTATAT ATGGAAGCAACGAATTATAGTGATTTCCGCCGCAACCTTAAGCATTATAT *******************************	50 50 50
L.rhamnosus_Lc_705 L.rhamnosus_LOCK908 L.rhamnosus_ATCC_8530	GAGTCAAGTCAACGAAGACGCCGAACCGCTACTGGTTACCGCTAAAGATG GAGTCAAGTCA	100 100 100
L.rhamnosus_Lc_705 L.rhamnosus_LOCK908 L.rhamnosus_ATCC_8530	ATGATGACAATGTGGTGGTTATGAGCAAGCACGATTTTGACGCCATCGAA ATGATGACAATGTGGTGGTTATGAGCAAGCACGATTTTGACGCCATCGAA ATGATGACAATGTGGTGGTTATGAGCAAGCACGATTTTGACGCCATCGAA ***********************************	150 150 150
L.rhamnosus_Lc_705 L.rhamnosus_LOCK908 L.rhamnosus_ATCC_8530	GAAACCCTGTATTTACTCAGCAATCCCAAGCTGATGGCCAAAATCAAACG GAAACCCTGTATTTACTCAGCAATCCCAAGCTGATGGCCAAAATCAAACG GAAACCCTGTATTTACTCAGCAATCCCAAGCTGATGGCCAAAATCAAACG *********************************	200 200 200
L.rhamnosus_Lc_705 L.rhamnosus_LOCK908 L.rhamnosus_ATCC_8530	TGGTGATGCCCAAATTGCCGCTGGAAAGGCTAAACAGCACGAGTTGTTAA TGGTGATGCCCAAATTGCCGCTGGAAAGGCTAAACAGCACGAGTTGTTAA TGGTGATGCCCAAATTGCCGCTGGAAAGGCTAAACAGCACGAGTTGTTAA *****************************	250 250 250
L.rhamnosus_Lc_705 L.rhamnosus_LOCK908 L.rhamnosus_ATCC_8530	CGGACTTCGATCATGATTAA 270 CGGACTTCGATCATGATTAA 270 CGGACTTCGATCATGATTAA 270 **********	

L.helveticus_DPC_4571 L.helveticus_CNRZ32 L.helveticus_H10 L.helveticus_R0052	ATGACAGTAGCATTAACTCAAAGCGACTTTAGAGCGCACATTAAAAAATA ATGACAGTAGCATTAACTCAAAGCGACTTTAGAGCGCACATTAAAAAATA ATGACAGTAGCATTAACTCAAAGCGACTTTAGAGCGCACATTAAAAAATA ATGACAGTAGCATTAACTCAAAGCGACTTTAGAGCGCACATTAAAAAATA ****	50 50 50 50
L.helveticus_DPC_4571 L.helveticus_CNRZ32 L.helveticus_H10 L.helveticus_R0052	TTTAGATCAAGTAAACGATGATGATGAGACAGTTTATGTTGCCAGATCAA TTTAGATCAAGTAAACGATGATGATGAGACAGTTTATGTTGCCAGATCAA TTTAGATCAAGTAAACGATGATGATGAGACAGTTTATGTTGCCAGATCAA TTTAGATCAAGTAAACGATGATGATGAGACAGTTTATGTTGCCAGATCAA **********************************	100 100 100 100
L.helveticus_DPC_4571 L.helveticus_CNRZ32 L.helveticus_H10 L.helveticus_R0052	ATAGTCGTAGTGTTGCAGTAATTTCTCAGGAAAAGATGTATTGGATGGA	150 150 150 150
L.helveticus_DPC_4571 L.helveticus_CNRZ32 L.helveticus_H10 L.helveticus_R0052	AAAGCTATACAAGCAAAAGAAGAATTCATTAGATTACGCTGTTGCTCGTGA AAAGCTATACAAGCAAAAGAAGAATTCATTAGATTACGCTGTTGCTCGTGA AAAGCTATACAAGCAAAAGAAGAATTCATTAGATTACGCTGTTGCTCGTGA AAAGCTATACAAGCAAAAGAAGAATTCATTAGATTACGCTGTTGCTCGTGA ***********************************	200 200 200 200
L.helveticus_DPC_4571 L.helveticus_CNRZ32 L.helveticus_H10 L.helveticus_R0052	TCAATTAATTCGTAGAAATGTTTTGCCTGATGACCCAATTGTTGAATCCA TCAATTAATTCGTAGAAATGTTTTGCCTGATGACCCAATTGTTGAATCCA TCAATTAATTCGTAGAAATGTTTTGCCTGATGACCCAATTGTTGAATCCA TCAATTAATTCGTAGAAATGTTTTGCCTGATGACCCAATTGTTGAATCCA	250 250 250 250
L.helveticus_DPC_4571 L.helveticus_CNRZ32 L.helveticus_H10 L.helveticus_R0052	ATGATGATTATTGGGAGAAATTTAAATAA 279 ATGATGATTATTGGGAGAAATTTAAATAA 279 ATGATGATTATTGGGAGAAATTTAAATAA 279 ATGATGATTATTGGGAGAAATTTAAATAA 279	

1	I J J J J J J J J J J	
L.casei_LC2W	ATGGATGCAATGAGCTACCATCATTTCAAGCAGCATCTTAAAGACCACCTGAAACAAGTC	60
L.casei BL23	ATGGATGCAATGAGCTACCATCATTTCAAGCAGCATCTTAAAGACCACCTGAAACAAGTC	60
L.casei W56	ATGGATGCAATGAGCTACCATCATTTCAAGCAGCATCTTAAAGACCACCTGAAACAAGTC	60
L.casei BD II	ATGGATGCAATGAGCTACCATCATTTCAAGCAGCATCTTAAAGACCACCTGAAACAAGTC	60

L.casei LC2W	AATGAAGATGCCATCCCATTAGTCGTCACTTTCAAGAATCCAGACGACAATGTTGTGGTG	120
L.casei BL23	AATGAAGATGCCATCCCATTAGTCGTCACTTTCAAGAATCCAGACGACAATGTTGTGGTG	120
L.casei W56	AATGAAGATGCCATCCCATTAGTCGTCACTTTCAAGAATCCAGACGACAATGTTGTGGTG	120
L.casei BD II	AATGAAGATGCCATCCCATTAGTCGTCACTTTCAAGAATCCAGACGACAATGTTGTGGTG	120

L.casei LC2W	ATGAGCAAACGCGATTTTGACGCTACCGAAGAAACCATGTATTTGCTTAGTAACCCGGAA	180
L.casei BL23	ATGAGCAAACGCGATTTTGACGCTACCGAAGAAACCATGTATTTGCTTAGTAACCCCGGAA	180
L.casei W56	ATGAGCAAACGCGATTTTGACGCTACCGAAGAAACCATGTATTTGCTTAGTAACCCCGGAA	180
L casei BD II		180
H.Cuber_DD_II	*****	100
L.casei LC2W	CTGATGGCCCGAATTCGCCGTGGGGACGCGCAAATTACGGCTGGTAAAGCCAAGCGCCAC	240
L.casei BL23	CTGATGGCCCGAATTCGCCGTGGGGGCGCGCAAATTACGGCTGGTAAAGCCAAGCGCCAC	240
L.casei W56	CTGATGGCCCGAATTCGCCGTGGGGACGCGCAAATTACGGCTGGTAAAGCCAAGCGCCAC	240
L.casei BD II	CTGATGGCCCGAATTCGCCGTGGGGGCGCGCGCAAATTACGGCTGGTAAAGCCAAGCGCCAC	240
1.00001_00_11	*****	L 10
L.casei LC2W	GATCTACCAAACGTATAA 258	
L.casei BL23	GATCTACCAAACGTATAA 258	
L.casei W56	GATCTACCAAACGTATAA 258	
L.casei BD II	GATCTACCAAACGTATAA 258	

>L.reuteri_I5007 ATGCCAATTGCTACTCAAAGTGACTTCAGAAAACATATCAAGGATTACCTTGATCGAGTTAATGAAGACGAGCAAACTGTCTTAGTTGCCC GTTCAAATCAACGAACAGCTGCCATCATCTCCCCAAAATCAATTGAATGCATTGCTTGATGCTGTAAATGCTAAGGAAGATTCATTAGATTATGC TATTGCAAGAGATAAATTAATTGACATGCATGTTATCCCAGATGATCCTATTATTGAATCCAATGACAATTACTGGAATCAATTCAAGAATAGT GAGGAAAAGTAA

Выравнивание нуклеотидной последовательности генов группы yefM9

>L.johnsonii_FI9785

ATGGAGAAAGCTATCCAAATCAAAAGAAGATTCTTTAGAGTACGCGATCGCTCGTGATCAACTAATTCAAAGACATGAGTTATCGGAAGATCCAA TTGTAGAATCAACTGATGATTATTGGAATCAATTTAAGTAA

БЛАГОДАРНОСТИ

д.б.н. Ботиной Светлане Геннадиевне

Федеральное государственное бюджетное учреждение науки Институт общей генетики им. Н.И. Вавилова Российской академии наук

Лабораториия генетики микроорганизмов д.б.н. Даниленко Валерий Николаевич д.б.н. Полуэктова Елена Ульриховна Захаревич Наталья Владимировна

Студенты лаборатории генетики микроорганизмов Гладышев Сергей Александрович (МФТИ, кафедра биоинформатики) Емельянов Кирилл Викторович (МФТИ, кафедра биоинформатики) Алиев Владислав Олегович (МГУ, кафедра генетики)

Лаборатория системной биологии и вычислительной генетики д.б.н. Макеев Всеволод Юрьевич к.б.н. Касьянов Артем Сергеевич

Федеральное государственное бюджетное учреждение науки Институт молекулярной биологии им. В.А. Энгельгардта Российской академии наук

Лаборатория постгеномных исследований

к.б.н. Кудрявцева Анна Викторовна к.б.н. Снежкина Анастасия Владимировна

Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Beutenbergstr, Jena, Germany

Hans Krügel **Friedrich-Schiller-University Jena, Germany** Sabine Brantl Natalie Jahn